• Title/Summary/Keyword: ac-Conductivity

Search Result 183, Processing Time 0.034 seconds

Effects of Non-uniform Pollution on the AC Flashover Performance of Suspension Insulators

  • Zhijin, Zhang;Jiayao, Zhao;Donghong, Wei;Xingliang, Jiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.961-968
    • /
    • 2016
  • The non-uniform distribution of contamination on insulator surface has appreciable effects on flashover voltage, and corresponding researches are valuable for the better selection of outdoor insulation. In this paper, two typical types of porcelain and glass insulators which are widely used in ac lines were taken as the research subjects, and their corrections of AC flashover voltage under non-uniform pollution were studied. Besides, their flashover characteristics under different ratio (T/B) of top to bottom surface salt deposit density (SDD) were investigated, including the analysis of flashover voltage, surface pollution layer conductivity and critical leakage current. Test results gave the modified formulas for predicting flashover voltage of the two samples, which can be directly applied in the transmission line design. Also, the analysis delivered that, the basic reason why the flashover voltage increases with the decrease of T/B, is due to the decrease of equivalent surface conductivity of the whole surface and the decrease of critical leakage current. This research will be of certain value in providing references for outdoor insulation selection, as well as in proposing more information for revealing pollution flashover mechanism.

Investigations of Temperature Effect on the Conduction Mechanism of Electrical Conductivity of Copolymer/Carbon Black Composite

  • El Hasnaoui, M.;Kreit, L.;Costa, L.C.;Achour, M.E.
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.121-125
    • /
    • 2017
  • This study deals the prediction of temperature effect on low-frequency dispersion of alternating current (AC) conductivity spectra of composite materials based on copolymer reinforced with carbon black (CB) particles. A sample of ethylene butylacrylate loaded with 13% of CB particles were prepared and investigated using the impedance spectroscopy representation in the frequency range from 40 Hz to 0.1 MHz and temperature range from $20^{\circ}C$ to $125^{\circ}C$. The dielectric constant, ${\varepsilon}^{\prime}$, and dielectric losses, ${\varepsilon}^{{\prime}{\prime}}$, were found to decrease with increasing frequency. The frequency dependence of the AC conductivity follows the universal power law with a large deviation in the high frequency region, the positive temperature coefficient in resistivity effect has been observed below the melting temperature which makes this composite potentially remarkable for industrial applications.

AC Conductivity and Dielectric Constant of Ni-MgO Composites (Ni-MgO 복합재료의 전기전도도와 유전상수)

  • ;Eric R. Kreidler
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.4
    • /
    • pp.329-337
    • /
    • 1991
  • The Ni-MgO composites were prepared by coprecipitation of NiO-MgO solid solutions and their selective reduction in a hydrogen atmosphere. We report on the measurements of both ac conductivity $\sigma$ ($\omega$, f) and dielectric constant $textsc{k}$'($\omega$, f) for the Ni-MgO composites in the frequency range from 10 Hz to 10 MHz at room temperature. The frequency exponents of conductivity and dielectric constant, x and y, are found to be x=0.98$\pm$0.05 and y=0.05$\pm$0.01. These results are in good agreement with a general scaling relation $\chi$-y=1, although these values are different from the theoretical predications. The dielectric constant exponent ($textsc{k}$' f-fc -s) is found to be s=0.62$\pm$0.07 with estimated percolation threshold fc=0.20$\pm$0.02.

  • PDF

Electrochemical Characteristics of Activated Carbon Electrode for Supercapacitor (Supercapacitor용 활성탄 전극의 전기 화학적 특성)

  • 김경민;이용욱;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.11a
    • /
    • pp.273-277
    • /
    • 2002
  • In the electrode fabrication of unit cell, we found that optimal the electrochemical characteristics were obtained with at 90 wt.% of activated carbon(BP-20), 5 wt.% of conducting agent(Ppy, Super P) and 5 wt.% of P(VdF-co-HFP)/PVP mixed binder. The electrochemical characteristics of unit cell with Ppy improver were as follows : 37.6 F/g of specific capacitance, 0.98 $\Omega$ of AC-ESR, 2.92 Wh/kg and 6.05 Wh/L of energy density, and 754 W/kg and 1,562 W/L of power density. It was confirmed that internal resistance were reduced due to the increase of electrical conductivity and filling density by the introduction of conductivity agent, and content of conducting agent was suitable in the range of 4~6 wt.%. According to the impedance measurement of the electrode with conductivity agent, we found that it was possible to charge rapidly by the fast steady-state current convergence due to low equivalent series resistance(AC-ESR), fast charge transfer rate at interface between electrode and electrolyte, and low RC time constant.

  • PDF

Experimental evaluation of electrical conductivity of carbon fiber reinforced fly-ash based geopolymer

  • Vaidya, Saiprasad;Allouche, Erez N.
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.27-40
    • /
    • 2011
  • Geopolymer concrete is finding a growing number of niche applications in the field of civil engineering due to its high compressive strength and strength gain rate, retainage of structural properties in elevated temperature environments, chemical stability in highly acidic conditions and environmental benefits. Combining the above mentioned characteristics with induced electrical conductivity, could enable geopolymer cement to serve as a smart and sustainable cementitious material suitable for health monitoring of civil structures. Carbon fibers were added to fresh geopolymer and OPC (ordinary Portland cement) mixes to enhance their electrical conductivities. AC-impedance spectroscopy analysis was performed on the specimens with fiber fraction ranging from 0.008 to 0.8 with respect to the weight of cementitious binder, to measure their electrical resistivity values and to determine the maximum beneficial fiber content required to attain electrical percolation. Experimental observations suggest that CFR-geopolymer cement exhibits superior performance to CFR-OPC in terms of conducting electrical current.

Magnetic Field Reduction Characteristics of Shielding Wear Materials for Workers Using AC Arc Welder (교류 아크용접기를 사용하는 작업자의 차폐복 재질에 따른 자계저감 특성검토)

  • Park, Jun-Hyeong;Min, Suk-Won;Lee, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1265-1271
    • /
    • 2010
  • Power cable of an AC arc welder can surround a body of worker at the moment of welding. Applying the boundary element method, we calculated current densities induced in organs inside a worker to study the magnetic field reduction characteristics of shielding wear materials. We knew shielding wear with high permeability materials lowers current density more than high conductivity materials. We also found current density was lowest when high permeability materials were inside high conductivity materials in double layer shielding wear.

A Study on Numerical Analysis of the AC Loss in a Single-layer Superconducting Cable Sample (단층 초전도케이블 샘플에서 교류손실의 수치해석에 대한 연구)

  • Li, Zhu-Yong;Ma, Yong-Hu;Ryu, Kyung-Woo;Hwang, Si-Dole
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.606-611
    • /
    • 2009
  • AC loss is one of the important factors for commercialization of a high temperature superconducting (HTS) cable from an economic point of view. But AC loss characteristics of the HTS-cable are not elucidated completely because of its complex structure. As an earlier stage of analyzing the AC loss in the 22.9 kV/50 MVA, 100m HTS-cable system of Korea Electric Power Corporation (KEPCO) which is now in collaboration with us, a two-dimensional (2D) numerical model, which takes into account the nonlinear conductivity properties of a high temperature superconductor, has been developed. In order to examine our 2D model, we have prepared several single-layer cable samples whose AC losses are sufficiently reliable due to their simple structure. The AC losses of the samples were experimentally investigated and then compared with our 2D model. The results show that the numerically calculated AC losses are not in good agreement with the measured ones for the cylindrical cable and deca-cable samples with low critical current density. However, the numerically calculated and measured AC losses are relatively in good agreement for the deca-cable and hex-cable samples with high critical current density, although the difference between these two loss data in the deca-cable sample tends to increase in the low current region.

Ion Transport and High Frequency Dielectric of the Hollandite Nax$(Ti_{8-x}Cr_x)O_{16}$ (Hollandite Nax$(Ti_{8-x}Cr_x)O_{16}$의 이온 전송과 고유전율 특성)

  • Yun, Ju-Ho;Li, Ying;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.241-242
    • /
    • 2008
  • The Velocity Autocorrelation Function (VAF) of the sodium ions is calculated for a range of temperature from 250K to 1000K and converted into the linear ac-conductivity and ac-susceptibility response via Fourier transformation. A peak is found in the conductivity around $6\times10^{12}$ Hz that has some of the character of a Poley absorption. Here it is shown to be due to an harmonically coupled site vibrations of the sodium atoms, which extend only over a limited range. At frequencies below the peak the conductivity tends towards a constant i.e. dc value corresponding to a constant flow of ions through the simulation cell. At high temperatures the conductivity due to this ion transport process behaves like a metal with an insulator to metal transition occurring around a specific temperature.

  • PDF

Molecular Simulation for Ion Transport and High Frequency Dielectric of the Hollandite $Nax(Ti_8-_xCr_x)O_{16}$ (Hollandite $Nax(Ti_8-_xCr_x)O_{16}$의 이온 전송과 고유전율을 위한 분자 시뮬레이션)

  • Jung, In-Ho;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2299-2300
    • /
    • 2008
  • The Velocity Autocorrelation Function (VAF) of the sodium ions is calculated for a range of temperature from 250K to 1000K and converted into the linear ac-conductivity and ac-susceptibility response via Fourier transformation. A peak is found in the conductivity around $6{\times}10^{12}$ Hz that has some of the character of a Poley absorption. Here it is shown to be due to an harmonically coupled site vibrations of the sodium atoms, which extend only over a limited range. At frequencies below the peak the conductivity tends towards a constant i.e. dc value corresponding to a constant flow of ions through the simulation cell. At high temperatures the conductivity due to this ion transport process behaves like a metal with an insulator to metal transition occurring around a specific temperature.

  • PDF

Ion Conduction Properties of PVDF/PAN based Polymer Electrolyte for Lithium Polymer Battery (리튬 폴리머전지용 PVDF/PAN계 고분자 전해질의 이온 전도 특성)

  • 이재안;김종욱;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.306-311
    • /
    • 2000
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li polymer battery. The temperature dependence of conductivity impedance spectroscopy and electrochemical properties of PDF/PAN electrolytes as a function of a mixed ratio were reported for PVDF/PAN based polymer electrolyte films which were prepared by thermal gellification method of preweighed PVDF/PAN plasticizer and Li salt. The conductivity of PVDF/PAN electrolytes was 10$\^$-3/S/cm. 20PVDF5PEN LiCiO$\_$4//PC$\_$10//EC$\_$10/ electrolyte has the better conductivity compared to others. 20PVDF5PANLICIO$\_$4//PC$\_$10//EC$\_$10/ electroylte remains stable up to 5V vs. Li/Li$\^$+/. Steady state current method and ac impedance were used for the determination of transference numbers in PVDF/PAN electrolyte film. The transference number of 20PVDF5PANLiCO$\^$4//PC$\_$10//EC$\_$10/ electrolyte is 0.48.

  • PDF