• Title/Summary/Keyword: ac magnetic field

Search Result 213, Processing Time 0.025 seconds

The Influence of Magnetic Field Orientating on Magnetization Loss of a Bi-2223 Tape (자장 방향이 Bi-2223테이프의 자화손실에 미치는 영향)

  • 한형주;김현준;류경우;최병주;최세용;나완수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.271-273
    • /
    • 2002
  • The ac loss in Bi-2223 tapes has been studied by a magnetic method. A brief overview of the theoretical background and the experimental set-up is presented. Measurements are made at 77 K in a magnetic fields. The magnitude of the ac loss indicates that filaments are fully coupled, which agrees with theory. As in other measurements, the loss in perpendicular field is larger than that in the parallel field by about a factor 10, which is close to the aspect ratio of the tape.

  • PDF

Thermo-sensitive Electrospun Fibrous Magnetic Composite Sheets

  • Choi, Jungsu;Kim, Jinu;Yang, Heejae;Ko, Frank K.;Kim, Ki Hyeon
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.215-220
    • /
    • 2015
  • The PVDF fibrous composite filled with iron oxide nanoparticles were prepared by using the electrospinning technique. The electrospun composite have the thickness in the range of $60-80{\mu}m$ with the average fibrous diameters of 500-900 nm. The magnetizations of PVDF fibrous composite filled with iron oxide nanoparticles showed 4.5 emu/g, 3.1 emu/g and 1.6 emu/g at 1.5 T of external magnetic field for 20 wt.%, 10 wt.% and 5 wt.% iron oxide nanoparticles, respectively. The heat elevation of the magnetic composite were measured under various AC magnetic fields, frequency and the ambient temperatures. The temperature reached up to $46.3^{\circ}C$ from $36^{\circ}C$ at 128 Oe and 355 kHz for 20 wt.% iron oxide nanoparticles filled in PVDF fibrous composite sheet. The specific absorption rate of theses sheets increased from 0.041 W/g to 0.236 W/g with the increment of AC magnetic field from 90 Oe to 167 Oe at 190 kHz, respectively.

$SO_2$ and CO Removal Characteristics in Various Applied Voltage of Nonthermal Discharge Plasma in a Crossed DC Magnetic Field (전.자계상의 전원장치변화에 따른 비열방전 플라즈마의 $SO_2$와 CO가스 제거특성)

  • Lee, Geun-Taek;Geum, Sang-Taek;Mun, Jae-Duk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.215-220
    • /
    • 1999
  • $SO_2$and CO gas removal characteristics of a wire-to-cylinder type nonthermal discharge plasma reactor in various applied voltage (-dc, ac, fast rising pulse and high frequency pulse) and a crossed dc magnetic field have been investigated. The experiment has been emphasized on the oxidizing characteristics of $SO_2$ and CO gas by $O_3$ and the applying of a crossed magnetic field, which would induce the cyclotronic and drift motions of electrons making the residual time longer in the removal airgap space. And it also would enhance the energy of electrons and the electrophysicochemical actions to remove the pollutant gases effectively. It is found thatthe corona onset voltage and the breakdown voltage were decreased with increasing the crossed magnetic field and decrease initial fed $SO_2$and CO concentration. As a result, a higher ozone generation and $SO_2$ and CO gas removal rate of 20[%] can be obtained with -dc, ac and fast rising pulse corona discharges in the crossed dc current-induced magnetic field. But high frequency pulse didn't show effect in applying of a crossed magnetic field.

  • PDF

Step-Up Asymmetrical Nine Phase Delta-Connected Transformer for HVDC Transmission

  • Ammar, Arafet Ben;Ammar, Faouzi Ben
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1920-1929
    • /
    • 2018
  • In order to provide a source for nine phases suitable for 18-pulse ac to dc power, this paper proposes a new structure for a step-up asymmetrical delta-connected transformer for converting three-phase ac power to nine-phase ac power. The design allows for symmetry between the nine output voltages to improve the power quality of the supply current and to minimize the THD. The results show that this new structure proves the equality between the output voltages with $40^{\circ}-{\alpha}$ and $40^{\circ}+{\alpha}$ phase shifting and produces symmetrical output currents. This result in the elimination of harmonics in the network current and provides a simulated THD that is equal to 5.12 %. An experimental prototype of the step-up asymmetrical delta-autotransformer is developed in the laboratory and the obtained results give a network current with a THD that is equal to 5.35%. Furthermore, a finite element analysis with a 3D magnetic field model is made based on the dimensions of the 4kVA, 400 V laboratory prototype three-phase with three-limb delta-autotransformer with a six-stacked-core in each limb. The magnetic distribution flux, field intensity and magnetic energy are carried out under open-circuit operation or load-loss.

Design of MSR for Magnetic Field Shielding of Low Frequency (저주파 자기장 차폐를 위한 자기차폐실 설계)

  • Choi, Hak-Yun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.154-159
    • /
    • 2010
  • In this paper, the magnetically shielded room for low magnetic field shielding is designed and measured by fabricated. The size of magnetically shielded room was 3.0[m](W)$\times$3.0[m](L)$\times$3.0[m](H) to enter the industrial measuring instruments and analyzed DC and AC shielding characteristics of magnetic materials with a high permeability and AC shielding characteristics by eddy current of conductive materials. As a results, shielded room dimensions were obtained. To verify the analysis results, magnetically shielded room is fabricated and the calculated results are compared with the measured results. The Measured results show good agreement with calculated results. According to measurements, 5 times of 0.1[Hz] and 86 times of 60[Hz] is achieved at low frequency. The fabricated shielding room can be used as the magnetically shielding room for low magnetic field shielding.

Analysis of AC losses in HTS coils by temperature variations

  • Kim, Yungil;Lee, Ji-Kwang;Lee, Seyeon;Kim, Woo-Seok;Lee, Siyoung;Choi, Kyeongdal
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.50-54
    • /
    • 2018
  • We analyzed the temperature dependency of the AC losses in high temperature superconducting (HTS) coils. In the case of a short sample of an HTS tape, the magnetization loss at 4.2 K could be higher than the one at 77 K for a same transport current. It happens when the perpendicular magnetic field is above a certain magnitude. The AC loss characteristics of solenoidal coils have been analyzed at the temperatures of 65 K and 77 K. They were categorized by the aspect ratios. The operating current of a solenoid was normally set about 70 % of the critical current. An HTS solenoid with the same operating current of 77 K causes larger AC losses at 65 K in the most cases of the HTS solenoids. We also analyzed the AC loss characteristics due to the temperature variations for three types of superconducting magnetic energy storages. Two of them were solenoidal types and the other was toroidal type. The results showed the tendency for the coils to have higher AC losses at lower temperature with the same operating currents and scenarios.

Manufacturing and characteristic if the magnet for generating a homogeneous magnetic field (균둥 자계 발생용 마그테트의 제작 및 특성)

  • 최세용;나완수;이세희;박일한
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.73-76
    • /
    • 1999
  • Superconductors are dissipative when exposed to time-varying magnetic fields. To analyze the AC characteristics of the superconductor, one usually needs to know magnetization curves of it. A good magnetization curves can be obtained only in a homogeneous magnetic field. In this paper, we report the fabrication and test results of a homogeneous magnet, which aims to give background magnetic fields for the superconductor.

  • PDF

Simulation of Magnetic Field and Removal Characteristic of Nitrogen Oxide Using Wire-Plate Type Plasma Reactor (선 대 평판형 플라즈마 반응기를 이용한 자계 시뮬레이션과 질소산화물제거 특성)

  • 이현수;박재윤
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.407-411
    • /
    • 2003
  • The purpose of this paper is to study the removal of nitrogen oxide(NOx) using a wire-plate type plasma reactor with magnet attached for indoor air purification. In order to produce a more effective reactor, we conducted magnetic field simulations. The results of the magnetic field simulations show that NOx can be removed more effectively. The results from the magnetic field simulation show that when 7 magnets were applied to the reactor, the magnetic flux density was at its highest amount than when using 0, 3, or 5 magnets. From the data obtained by the simulation results a plasma reactor was made and thus, several experiments were conducted. The best removal efficiency was obtained with 14 W AC power to the reactor with 5 magnets.

AC Loss Analysis of 10 MW Class Fully High Temperature Superconducting Synchronous Generators with Dual Field Windings (이중계자를 갖는 10 MW급 전초전도 동기 발전기의 교류손실 해석)

  • Park, Sang Ho;Lee, Myeonghee;Lee, Seyeon;Yang, Hyung Suk;Kim, Woo-Seok;Lee, Ji-Kwang;Choi, Kyeongdal
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.467-472
    • /
    • 2020
  • The superconducting synchronous generator is one of the breakthrough elements for direct-drive wind turbines because it is light and small. Normally the superconducting one has copper armature windings in the stator and superconducting field windings on the rotor. The high resistance of the armature can make large copper losses, comparing with the conventional generators with a gear box. One of the solutions for the large copper losses could be a fully superconducting generator. But the high magnetic fields from the superconducting field windings on the rotor also make high perpendicular magnetic fields on the superconducting tapes in the armature windings. We have proposed a fully superconducting synchronous generator with dual field windings. It could immensely decrease the circumferential component of the magnetic field from the field windings at the armature windings. In this paper, we conceptually designed 3 types of superconducting synchronous generators. The first one is the fully superconducting one with conventional structure, which has superconducting armature windings in the stator and superconducting field windings on the rotor. The second one is the one with dual superconducting field windings and superconducting armature windings between them. The last one is the same as the third one except the structure of the armature. If the concentrated armature windings are superconducting ones with cryostats, then they cannot be installed within the span of 2 poles. So, we adopted 3 phases windings within 4 poles system. It makes more AC losses but can be manufactured really.

Distribution of Magnetic Field Depending on the Current in the μ-turn Coil to Capture Red Blood Cells (적혈구 포획용 미크론 크기 코일에 흐르는 전류의 크기에 따른 자기장 분포 특성)

  • Lee, Won-Hyung;Chung, Hyun-Jun;Kim, Nu-Ri;Park, Ji-Soo;Lee, Sang-Suk;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.162-168
    • /
    • 2015
  • The ${\mu}$-turn coil having a width of ${\mu}m$ on the GMR-SV (giant magnetoresistance-spin valve) device based on the antiferromagnetic IrMn layer was fabricated by using the optical lithography process. In the case of GMR-SV film and GMR-SV device, the magnetoresistance ratios and the magnetic sensitivities are 4.4%, 2.0%/Oe and 1.6 %, 0.1%/Oe, respectively. In the y-z plane the distribution of magnetic field of GMR-SV device and $10{\mu}$-turns coil which put under the several magnetic bead(MB)s with a diameter of $1{\mu}m$ attached to RBC (red blood cell) was analyzed by the computer simulation using the finite element method. When the AC currents of 20 kHz from 0.1 mA to 10.0 mA flow to the 10 turns ${\mu}$-coil, the magnetic field at the position of $z=0{\mu}m$ at the center of coil was calculated from $30.1{\mu}T$ to $3060{\mu}T$ in proportion to the current. The magnetic field at the position of $z=10{\mu}m$ was decreased to one-sixth of that of $z=0{\mu}m$. It was confirmed that the $10{\mu}$-turn coil having enough magnitude of magnetic field for the capture of RBC is possible to use as a biosensor for the detection of magnetic beads attached to RBC.