• Title/Summary/Keyword: ac impedance measurement

Search Result 67, Processing Time 0.024 seconds

New Techniques for Impedance Characteristics Measurement of Islanded Microgrid based on Stability Analysis

  • Hou, Lixiang;Zhuo, Fang;Shi, Hongtao
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1163-1175
    • /
    • 2016
  • In recent years, microgrids have been the focus of considerable attention in distributed energy distribution. Microgrids contain a large number of power electronic devices that can potentially cause negative impedance instability. Harmonic impedance is an important tool to analyze stability and power quality of microgrids. Harmonic impedance can also be used in harmonic source localization. Precise measurement of microgrid impedance and analysis of system stability with impedances are essential to increase stability. In this study, we introduce a new square wave current injection method for impedance measurement and stability analysis. First, three stability criteria based on impedance parameters are presented. Then, we present a new impedance measurement method for microgrids based on square wave current injection. By injecting an unbalanced line-to-line current between two lines of the AC system, the method determines all impedance information in the traditional synchronous reference frame d-q model. Finally, the microgrid impedances of each part and the overall microgrid are calculated to verify the measurement results. In the experiments, a simulation model of a three-phase AC microgrid is developed using PSCAD, and the AC system harmonic impedance measuring device is developed.

Effects of Ac Mutual Coupling According to Location of Auxiliary Electrodes In Measuring the Ground Impedance of Vertically or Horizontally Buried Ground Electrode (수직 또는 수평으로 매설된 접지전극의 접지임피던스 측정시 보조전극 위치에 따른 전자유도의 영향)

  • Choi, Young-Chul;Choi, Jong-Hyuk;Lee, Bok-Hee;Jeon, Duk-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.86-92
    • /
    • 2009
  • In order to minimize ac mutual coupling, the auxiliary electrode are located at a right angle in measuring ground impedance. In case that the measurement space is limited, the alternative method is employed. At that time, it is necessary to investigate the measurement errors due to ac mutual coupling and earth mutual resistance in measuring the ground impedances. 'This paper presents the measurement accuracy according to the location of the current and potential auxiliary electrodes in measuring ground impedance of vertically or horizontally buried ground electrode. The measurement errors due to ac mutual coupling were evaluated Consequently, the effect of ac mutual coupling on the measurement accuracy for horizontally buried ground electrode is greater than that for vertically buried ground electrode. Measurement errors due to ac mutual coupling is the largest when the current and potential auxiliary electrodes are located in parallel. The 61.8[%] rule is inappropriate in measuring ground measurement. Theoretically, in case that the angle between the current and potential auxiliary electrodes is 90$[^{\circ}]$, there is no ac mutual coupling. If it is not possible to route the current and potential auxiliary electrodes at a right angle with limitation of measurement space, the location of these electrodes with an obtuse angle is preferred to that with an acute angle in reducing the measurement errors due to ac mutual coupling.

Performance Analysis of Polymer Electrolyte Membrane Fuel Cell by AC Impedance Measurement (교류 임피던스 측정법을 이용한 고분자 전해질 연료전지의 성능특성 분석)

  • Seo, Sang-Hern;Lee, Chang-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.283-290
    • /
    • 2009
  • This study focuses on the performance characteristics of polymer electrolyte membrane fuel cell (PEMFC) using the AC impedance technique. The experiment was carried out to investigate the optimal operating conditions of PEMFC such as cell temperature, flow rate, humidified temperature and back-pressure. The fuel cell performance was analyzed by DC electronic-loader with constant voltage mode and expressed by voltage-current density. Additionally, AC impedance was measured to analysis of ohmic and activation loss and expressed by Nyquist plot. The results showed that the cell performance increased with increase of cell temperature, air flow rate, humidified temperature and backpressure. Also, the activation loss decreased as the increase of cell temperature, air flow rate, humidified temperature and backpressure.

Monitoring of Corrosion Rates of Carbon Steel in Mortar under a Wet-Dry Cyclic Condition

  • Kim, Je-Kyoung;Kang, Tae-Young;Moon, Kyung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.179-183
    • /
    • 2007
  • The corrosion behavior of metal covered with mortar under a wet-dry cyclic condition were investigated to apply for the measurement of corrosion rates of reinforcing steel in concrete structure. The carbon steel in mortar having t=3 mm cover thickness was exposed to the alternate condition of 6 h immersion in chloride containing solution and 18 h drying at $25^{\circ}C$ and 50%RH. The electrochemical phenomena of a carbon steel and mortar interface was explained by an equivalent circuit consisting of a solution resistance, a charge transfer resistance and a CPE(Constant Phase Element). The corrosion rates were monitored continuously during exposure using an AC impedance technique. Simultaneously, the current distribution over the working electrode during impedance measurement was analyzed from the phase shift, $\theta$, in an intermediate frequency. The result showed that corrosion rate monitoring using an AC impedance method is suitable under the given exposure conditions even during the drying period when the metal is covered with the wetted mortar.

Evaluation of Measurement Accuracy of Ground Impedances in Counterpoise according to Location of Auxiliary Electrodes (보조전극의 위치에 따른 매설지선의 접지임피던스 측정정확도의 평가)

  • Lee, Bok-Hee;Choi, Young-Chul;Choi, Jong-Hyuk;Kim, Dong-Kyu;Lee, Gyu-Sun;Yang, Soon-Man;Kim, Tae-Gi
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.352-355
    • /
    • 2009
  • The ground resistance has been used as a method of estimating the capability of counterpoise. When transient currents blow through a ground electrode, it is reasonable to evaluate the performance of ground electrode system as a ground impedance instead of ground resistance. However, the measurement method of ground impedance for counterpoise is not clearly presented. This paper describes the measurement method of ground impedance considering the earth mutual resistances and AC mutual coupling. When we measure the ground impedance, the error due to earth mutual resistances depends on the distance between the auxiliary electrodes and the electrode under test. The measurement accuracy of high frequency ground impedance is mainly influenced by the location of the current electrode and the potential electrode.

  • PDF

Measurement of Grain Moisture Content using RF Impedance (I) - Electrical Properties of Grain - (고주파 임피던스를 이용한 곡류의 함수율 측정에 관한 연구 (I) - 곡류의 전기적 특성 구명 -)

  • 김기복;노상하
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.123-134
    • /
    • 1999
  • The electrical properties such as dielectric constant, dielectric loss factor and AC conductivity of grain were presented to measure the moisture content of grain using RF impedance. At frequency ranging from 1 to 10MHz and room temperature, $20^{\circ}C$, vector network analyzer(HP4195) and coaxial type sample holder were used to analyze the electrical properties of paddy(11∼24%w.b.), brown rice(11∼18%w.b.), barley(11∼21%w.b.) and wheat(11∼23%w.b.) depending on the moisture content, frequency and bulk density. The dielectric constant and AC conductivity of grain samples increased with moisture content and bulk density. The dielectric constants decreased with frequency and could be expressed as function of the moisture density(decimal moisture $content{\times}bulk$ density).

  • PDF

Study on the Development of Meridian Impedance Measurement System (경락 임피던스 측정 시스템 개발에 관한 연구)

  • Lee, Woo-Cheol;Yin, Chang-Shik;Min, Kyoung-Kee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.422-429
    • /
    • 2009
  • Meridian which used as the basic theory of acupuncture treatment, is an important functional connection system of acupuncture point in oriental medicine. Yangdorak and EAV have lack of precision because of using 2-electrode method, occurring high non-uniformed current density and electrode contact status on electrode placement spot. Therefore we implemented a meridian impedance measurement system for measuring meridian impedance using 4-electrode method. In order to confirm the precision of developed system, we made an constant current characteristic experiment using standard resistor. As a results of clinical study with 18 subjects, the meridian impedance showed that reproductivity and repeatability of HT7 acupuncture point are $0.515[k{\Omega}]{\pm}0.000$(mean${\pm}$standard deviation) and $0.515[k{\Omega}]{\pm}0.002$, respectively. And reproductivity and repeatability of PC7 are $0.521[k{\Omega}]{\pm}0.000$ and $0.521[{\Omega}]{\pm}0.001$ respectively. The proposed system was stable and reliable. Therefore this study proved AC impedance method to valid in measuring meridian impedance, and also verified precision and repeatability of the proposed meridian impedance measurement system. The proposed system will serve as more effective method of measuring meridian phenomena as a bioelectric signal in clinical practice.

An AC Impedance Spectrum Measurement Device for the Battery Module to Predict the Remaining Useful Life of the Lithium-Ion Batteries (리튬배터리의 잔여 유효 수명 추정을 위한 배터리 모듈용 AC 임피던스 스펙트럼 측정장치)

  • Lee, Seung-June;Farhan, Farooq;Khan, Asad;Cho, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.251-260
    • /
    • 2020
  • A growing interest has emerged in recycling used automobile batteries into energy storage systems (ESSs) to prevent their harmful effects to the environment from improper disposal and to recycle such resources. To transform used batteries into ESSs, composing battery modules with similar performance by grading them is crucial. Imbalance among battery modules degrades the performance of an entire system. Thus, the selection of modules with similar performance and remaining life is the first prerequisite in the reuse of used batteries. In this study, we develop an instrument to measure the impedance spectrum of a battery module to predict the useful remaining life of the used battery. The developed hardware and software are used to apply the AC perturbation to the used battery module and measure its impedance spectrum. The developed instrument can measure the impedance spectrum of the battery module from 0.1 Hz to 1 kHz and calculate the equivalent circuit parameters through curve fitting. The performance of the developed instrument is verified by comparing the measured impedance spectra with those obtained by a commercial equipment.

Characterizing the ac-dc-ac Degradation of Aircraft and Vehicle Organic Coatings using Embedded Electrodes

  • Bierwagen, Gordon P.;Allahar, Kerry N.;Su, Quan;Victoria, Johnston-Gelling
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.261-268
    • /
    • 2007
  • Embedded sensors were used as an in-situcorrosion-sensing device for aircraft and vehicular structures protected by organic coatings. Results are presented changes associated with a standard Airforce aircraft coating and a standard Army vehicle coating were monitored by embedded sensors. These coatings consisted of a polyurethane topcoat and an epoxy primer, however are formulated to provide different characteristics. The ac-dc-ac testing method was used to accelerate the degradation of these coatings while being immersed in a NaCl medium. Electrochemical impedance spectroscopy and electrochemical noise measurement experiments were used to monitor the induced changes. A comparison of the results between coatings subjected to the ac-dc-ac exposure and coatings subjected to only constant immersion in the NaCl medium is presented. The results were used to demonstrate the effectiveness of the ac-dc-ac method at accelerating the degradation of an organic coating without observably changing the normal mechanism of degradation. The data highlights the different features of the coating systems and tracks them while the coating is being degraded. The aircraft coating was characterized by a high-resistant topcoat that can mask corrosion/primer degradation at the primer/substrate interface whereas the vehicle coating was characterized by a low-resistant topcoat with an effective corrosion inhibiting primer. Details of the ac-dc-ac degradation were evaluated by using an equivalent circuit to help interpret the electrochemical impedance data.

Electrical Properties of ZnO-SnO$_2$ Composites (ZnO-SnO$_2$복합체의 전기적성질)

  • 김태원;전장배;최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.303-305
    • /
    • 1996
  • The electrical Properties of ZnO added TiO$_2$were investigated by using the complex impedance measurement and voltage-current source and measurement unit. The electrical conductivity of ZnO added TiO$_2$decrease with increasing the content of ZnO. The frequency-dependent Ac conductivity increase as frequency increase. Also, the trend of capacitances is similar to the AC conductivity. The semicircles of impedance spectrum increase with increasing ZnO contents. The decrease of electrical conductivity seems to be the effect of ZnO acceptor adding.

  • PDF