• Title/Summary/Keyword: abutment height and shape

Search Result 7, Processing Time 0.019 seconds

A Study on the Defect Formation in Conform Process (CONFORM공정에서의 결함생성에 관한 연구)

  • 김영호;조진래;곽인섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.210-213
    • /
    • 1995
  • In this study,the effect of both process parameters (wheel velocity, friction coefficients between die and billet, etc) and die-shape (abutment height and shape, flash gap, etc.) on the surface defect on forming process is theoretically investigated. For this work, computer simulation was performed by using the DEFORM, a commercial FEM code. Through numerous simulations with different parameters and die shapes, We propose one optimal die shape for CONFORM process which can remove surface defect.

  • PDF

A Study on Pullout Stability according to Abutment Shape of True Mechanicaaly Stabilized Earth Wall Abutment (순수형 보강토교대의 교대 형상에 따른 인발 안정성 검토)

  • Shin, Keun-Sik;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.594-601
    • /
    • 2019
  • A true MSEW abutment is an abutment type that directly supports the load of a superstructure. Metal strips, which are in-extensile reinforcements, should be used to minimize abutment deformation. A study to derive the application conditions of a True MSEW abutment was carried out by Zevogolis(2007). As a result, the pullout factor of safety of the uppermost reinforcement was estimated to be the smallest. Therefore, the pullout factor of safety of the uppermost reinforcement is the most important design factor. Parameter analysis was conducted with the abutment length, abutment heel, and abutment height as variables. The pullout factor of safety increased with increasing abutment length and abutment heel length. This is because the contact area increases and the superstructure is dispersed as the abutment length and abutment heel length increase. The pullout factor of safety converges at an abutment length of 1.2m and an abutment heel length of 0.9m. This is because the effective length of the reinforcement is reduced due to the increase in contact area. On the other hand, the extension of the superstructure will increase if the abutment length and abutment heel length are increased excessively. In addition, earth-volume is increased if the abutment height increases excessively. This acts as an upper load on the MSE wall. Therefore, it needs to be examined carefully.

Influence of abutment height and convergence angle on the retrievability of cement-retained implant prostheses with a lingual slot

  • Choi, Kyu-Hyung;Son, KeunBaDa;Lee, Du-Hyeong;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.381-387
    • /
    • 2018
  • PURPOSE. Cement-retained implant prostheses can lack proper retrievability during repair, and residual cement can cause peri-implantitis. The purpose of this in vitro study was to evaluate the influence of abutment height and convergence angle on the retrievability of cement-retained implant prostheses with lingual slots, known as retrievable cement-type slots (RCS). MATERIALS AND METHODS. We fabricated six types of titanium abutments (10 of each type) with two different heights (4 mm and 6 mm), three different convergence angles ($8^{\circ}$, $10^{\circ}$, and $12^{\circ}$), a sloped shoulder margin (0.6 mm depth), a rectangular shape ($6mm{\times}6.5mm$) with rounded edges, and a rectangular ledge ($2mm{\times}1mm$) for the RCS. One monolithic zirconia crown was fabricated for each abutment using a dental computer-aided design/computer-aided manufacturing system. The abutments and crowns were permanently cemented together with dual-curing resin cement, followed by 24 hours in demineralized water at room temperature. Using a custom-made device with a slot driver and torque gauge, we recorded the torque ($N{\cdot}cm$) required to remove the crowns. Statistical analysis was conducted using multiple regression analysis and Mann-Whitney U tests (${\alpha}=.05$). RESULTS. Removal torques significantly decreased as convergence angles increased. Multiple regression analysis showed no significant interaction between the abutment height and the convergence angle (Durbin-Watson ratio: 2.186). CONCLUSION. Within the limitations of this in vitro study, we suggest that the retrievability of cement-retained implant prostheses with RCS can be maintained by adjusting the abutment height and convergence angle, even when they are permanently cemented together.

A MORPHOLOGIC STUDY ON MOLAR ABUTMENT DIES (금관 가공의치에서의 대구치 지대치에 관한 형태학적 연구)

  • Chung, Hun-Young
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.3 no.1
    • /
    • pp.44-50
    • /
    • 1995
  • Abutment dies which resemble the actual size and shape of crown abutment is essential in most of the research area of fixed prosthodontics like marginal accuracy, crown seating, behavior of luting agent and so on. Seeing the large portion of research is done with round shaped dies in different size and cone angles, the necessity of research on the crown abutment is self-evident. 500 molar abutments were collected randomly through the commercial dental laboratoy, regrdless of their position in the dental arch, sex, and age. The measurements of 22 points of a die were done, and the results were as fogbows : 1. The height of the molar dies was $3.9{\pm}1.2mm$ 2. The bucco-lingual width was $8.9{\pm}1.2mm$ at the base, and $7.4{\pm}1.2mm$ at the occlusal. 3. The desio-sistal width was $8.2{\pm}1.2mm$ at the base, and $7.0{\pm}1.3mm$ at the occlusal.

  • PDF

A SUTDY ABOUT THE SHAPE OF THE FRAMEWORK OF THE FIXED BONE ANCHORED BRIDGE USING DENIAL IMPLANTS (임프란트를 이용한 고정성 계속가공의치의 FRAMEWORK 형태에 관한 연구)

  • Kim, Te-Gyun;Lee, Young-Soo;Yoo, Kwang-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.1
    • /
    • pp.104-119
    • /
    • 1998
  • The purpose of this study was pertinent design of the framework of the fixed bone anchored bridge using implants in the edentulous mandible through analysis of stress distribution by the three dimensional finite element analysis method. The results were as follows: 1. The L-shaped framework was favorable in restoring the edentulous mandible by implants and fixed bone anchored bridge. 2. The structure of the framework should be designed to endure the occlusal load because of stress concentration at the most distal abutment of the framework. 3. The stress at the distal implant where cantilever starts was twice as much as that of other portions. 4. Compressive stress was generated on the framework of the mesial side of the distal implant and extrusive force was induced to the mesially positioned implants. 5. The height of vertical plate was high as possible as can be to distribute stresses concentrating bucco-lingually and labio-lingually in the framework between abutments, 6. Reinforcement of the horizontal plate thickness was needed because stress was loaded more on the horizontal plate than on the vertical plate of the framework. 7. Lengthening of the vertical plate can compensate for any limitations in horizontal plate width.

  • PDF

The Influence of Home Position(H.P.) and Random Position(R.P.) on the Shape of Prepared Tooth Surfaces -Upper Left 1st Molar for Full Cast Crown- (시술자세가 치관 삭제면 형태에 미치는 영향 -상악 좌측 제 1 대구치의 전부 주조관-)

  • Lee, Seung-Jeong;Choi, Dae-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.4
    • /
    • pp.257-274
    • /
    • 2001
  • To properly prepare teeth, dentists require a direct view of the working area and are often placed in a difficult position, moreover, a high proportion of dentists suffer from headache and back pain. Dentists who make use of the dental mirror and position their patients carefully to gain a proper view report less headache, pain and discomfort in the shoulders. It is recommended that dentists learn the "Home Position(H.P.)" which among the various "Random Position(R.P.)" methods, enables dentists to approach their patients in a stable posture. The purpose of this study was to compare tooth preparation in the H.P. and the R.P., and evaluate the clinical efficacy of the H.P.. Tooth preparation for a full cast crown was performed on the maxillary left 1st molar using the H.P. and the R.P., and the shapes of the prepared tooth surfaces at the two different operating positions were compared. The amount of occlusal reduction, marginal width, height, and axial taper were measured and analyzed. A T-test was performed separately to compare the results of the H.P. and the R.P. with respect to the accuracy of the corresponding tooth reduction. The results were as follows. ; 1. The amount of occlusal reduction was excessive on the mesiobuccal cusp(P<0.05), and deficient on the lingual cusp in the H.P.(P<0.01). In the R.P., this was excessive on the buccal cusp and deficient on the fossa and distolingual cusp(P<0.01). 2. The amounts of marginal width were excessive in all areas except on the lingual and mesial surfaces in the H.P. and lingual surface in the R.P.(P<0.01). 3. The marginal heights were achieved more accurately in the R.P. than the H.P.(P<0.01). 4. Axial surface taper was excessive in all areas in the H.P.(P<0.01). But the axial taper of measured areas was even, and tooth is more like to retain its original axis after reduction. In the R.P., axial surface taper was excessive on the mesial and buccal area, and deficient on the distolingual area(P<0.01), and therefore, the axis of the prepared teeth was tipped in the distolingual direction. 5. The times needed for preparation were 12 minutes and 49 seconds in the H.P., and 11 minutes and 35 seconds in the R.P., and the R.P. was statistically faster(P<0.01). The tooth preparation in the H.P. achieved its goal, in that it enabled the operator to make even tooth reduction. In conclusion, the H.P. system offers an improved method that can be used in clinic after specific training.

  • PDF

Examination of Allowable Displacement by Structural Analysis of IPM Bridge (토압분리형 교량의 구조해석을 통한 허용 변위량 검토)

  • Kim, Hong-Bae;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.534-544
    • /
    • 2019
  • Because the pile-bent of IPM Bridge is projected from the soil surface, excessive displacement of abutment can be induced. According to design guide of IPM Bridge, the shape of the bridges used in this study was applied to the maximum applicable 120.0m span, 30-degree for skew angle, and 10.0m for the protruded pile-bent height. The maximum displacement by the maximum span application condition of the IPM Bridge was calculated using this bridge model, and the safety of a horizontal displacement of the IPM Bridge was investigated based on the allowable displacement presented by Bozozuk. The maximum horizontal displacement of the IPM Bridge was calculated to be larger in the winter shrinkage condition than in the summer expansion condition, the horizontal displacements were more affected by the length of a bridge than by the skew angle. And the vertical displacement was not affected by the skew angle and length. As the span increases, the horizontal displacement increases significantly, the horizontal displacement at 120.0m span length was found to exceed the allowable displacement proposed by Bozozuk. However, the moment generated in the pile-bent did not exceed the plastic moment.