• Title/Summary/Keyword: absorption of water

Search Result 3,246, Processing Time 0.026 seconds

Aquatic Plants for Wastewater Treatment (수생식물을 이용한 수질정화에 관한 연구)

  • 나규환;권성환;이장훈
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.49-55
    • /
    • 1996
  • Water parsley(Oenanthe javanica(Blume) DC) was raised with varying population density(S) in the laboratory aquarium unit to determine the growth equation. The population density was measure after 7 days. The resultant growth curve was well fit to the equation 1/S = A+B (1/S0) with a high correlation coefficient ($R^2$ = 0.999). The maximum specific absorption rate was $9.011 \times 10^{-5}$ kg $NO_x-N/kg$ water parsley$\cdot$day and $1.31 \times 10^{-5}$ kg $PO_4-P/kg$ water parsley$\cdot$day when the average population density was $2.62 kg/m^2$. The relationship between population density and nutrient absorption rate, the absorption rate of $NO_x-N$ was 5.04~5.24 mg/l$\cdot$day when the population density was $7.51~10.0 $mg/m^2\cdot day$ and the absorption rate of $PO_4-P$ was 0.56~0.78 mg/l$\cdot$day when the population density was 5.02~10.0 $kg/m^2\cdot day$. Taking into account the nutrient absorption rate and growth rate, the population density between $7.0 kg/m^2\cdot day$ and $8.0 kg/m^2 \cdot day$ was selected. The removal rate of nutrient was investigated after 7 days culture. Removal rate of $NO_x-N$ was 95.6~99.95% with initial concentration of 35 mg $NO_x-N/l$, and the removal rate of $PO_4-P$ was also high, indicating 80.24~98.9% with initial concentration of 5.95 mg $PO_x-P/l$.

  • PDF

Analysis of Thermodynamic Design Data of Double-Effect Absorption System for Heating using LiCl-water for Evaporator Heating Source of Solar Energy (흡수식 2중효용 시스템의 증발기 열원으로 태양열을 이용하는 LiCl 수용액 난방시스템 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.39-46
    • /
    • 2004
  • In this paper, thermodynamic design data for heating of double-effect absorption system using LiCl-water for evaporator heating source of sofar energy are investigated for the water-LiCl pair and a comparative study of the water-LiCl pair with the water-LiBr pair is given used for the computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water -LiCl pair than for the water-LiBr pair, and FR is lower for the water-LiCl pair than for the water LiBr pair.

Electrical Properties of Wet Bars in Water-cooled Generator Stator Windings (흡습된 수냉각 발전기 고정자 권선의 전기적 특성)

  • Kim, Byeong-Rae;Kim, Hee-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.817-823
    • /
    • 2012
  • Insulation breakdown of water-cooled generator stator windings occurs frequently due to leakage of cooling water and absorption into the insulation material. Leakage and absorption problems of water-cooled stator windings are often found during regular preventive maintenance. To evaluate cooling water leakage and absorption, diagnostic tests were performed on two water-cooled turbine generators, which have been in service for 13 and 17 years, respectively. The test results of the measured electrical properties such as dissipation factor($tan{\delta}$), capacitance and AC leakage current for water-cooled generator stator windings with wet bars are reported in this paper.

Water Absorption Properties and Biodegradability of Lignin/PVA Nanofibrous Webs (리그닌/PVA 나노섬유 웹의 수분 특성 및 생분해성 평가)

  • Song, Youjung;Lee, Eunsil;Lee, Seungsin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.3
    • /
    • pp.517-526
    • /
    • 2017
  • The biodegradation and water absorption properties of lignin/poly(vinyl alcohol) (PVA) nanofibrous webs are investigated. Lignin/PVA nanofibrous webs containing 0, 50, and 85wt% of lignin were prepared via an electrospinning process to observe the effect of the lignin concentration on the biodegradability and water absorption properties of lignin/PVA nanofibrous webs. The morphology of the materials was examined by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). To understand the wetting behavior and hydrophilic nature of the electrospun lignin/PVA nanofibrous webs, the water absorbency, contact angle, and water uptake were examined. The enzymatic degradation of lignin/PVA nanofibrous webs was investigated using laccase by measuring total organic carbon (TOC) concentration over a course of 50 days. Water drops were absorbed immediately into all of the specimens. The water uptake of lignin/PVA nanofibrous webs increased as the amount of PVA in the lignin/PVA hybrid webs increased. The enzymatic degradation experiment indicated that the inherent biodegradability of lignin was retained after its transformation into nanofibers. Our findings imply that blending these two types of polymers is promising because it can lead to the development of a new range of multifunctional materials such as antimicrobial absorbent nanotextiles based on sustainable biopolymers.

End Use Tactile Property of the Split-type Nylon/PET Microfiber Fabrics (마찰과 세탁에 의한 극세섬유 직물의 표면과 촉감변화에 관한 연구)

  • 오경화;윤재희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.3_4
    • /
    • pp.539-545
    • /
    • 2004
  • In this study, the effect of washing, bleaching, and abrasion on tactile and the water absorption properties of the split-type Nylon/Polyester (N/P) microfiber pile-knit was investigated under various enduse conditions. We examined the water absorption and surface properties of PET microfiber which will be very useful in the future. We also studied the variations of their performance during usage caused by friction and repeated washing, regard to all kinds of physical, chemical changes which will appear while using those textiles. Progress in further splitting of PET microfiber fabric is observed with increases in the number of washing and bleaching cycles, and treatment temperature. Initial water absorption (%) was increased with progress in splitting, which provided efficient capillary channel. Surface properties were varied with additional splitting by washing and abrasion. Formation of pilling and splitting by abrasion increase surface roughness, diminishing tactile property, and reduced water absorption property. The current results from this study is expected to provide the appropriate washing management guide to consumers, and to inform end-use performance of product to a producer for improving product quality.

Effect of Water Absorption on the Tensile Properties of Carbon-Glass/Epoxy Hybrid Composite in Low Temperature (탄소-유리/에폭시 하이브리드 복합재의 저온 인장 특성에 미치는 수분의 영향)

  • Jung, Hana;Kim, Yonjig
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.729-734
    • /
    • 2012
  • This study investigated the effect of water absorption on the tensile properties of carbon-glass/epoxy hybrid composites at room temperature and $-30^{\circ}C$. To investigate the effect of the position of glass fabric in the hybrid composite on the tensile properties, the stacking pattern of the fiber fabrics for reinforcing was created in three different ways: (a) glass fabrics sandwiched between carbon fabrics, (b) carbon fabrics sandwiched between glass fabrics and (c) alternative layers of carbon and glass fabrics. They were manufactured by a vacuum-assisted resin transfer molding (VARTM) process. The results showed that there was surprisingly little difference in tensile strength at the two different temperatures with dry and wet conditions. However, the water absorption into the hybrid system affected the tensile properties of the hybrid composites at RT and $-30^{\circ}C$. When the glass fabrics were at the outermost layers, the hybrid composite had the lowest tensile properties. This is attributed to the fact that the composite had a relatively high water absorption rate.

Kinetics of Water Vapor Absorption by Sodium Alginate-based Films

  • Seog, Eun-Ju;Zuo, Li;Lee, Jun-Ho;Rhim, Jong-Whan
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.1
    • /
    • pp.28-32
    • /
    • 2008
  • Water vapor sorption by sodium alginate-based films may result in swelling and conformational changes in the molecular structure and affecting the water vapor barrier properties. Sodium alginate film specimens were dried in a vacuum freeze dryer and their moisture content was determined by an air-oven method. The water vapor absorption was determined at two different levels of water activities (0.727 and 0.995) and at three temperatures (10, 20, and $30^{\circ}C$), and kinetics were analyzed using a simple empirical model. Reasonably good straight lines were obtained with plotting of 1/($m-m_0$) vs 1/t. It was found that water vapor absorption kinetics of sodium alginate films were accurately described by a simple empirical model. The rate of water vapor sorption increased with increase in temperature and it showed temperature dependency following the Arrhenius equation. The activation energies varied from 49.18$\sim$149.55 kJ/mol depending on the relative humidity.

Effects of Water Absorption and Surface Treatment on Mechanical Properties of Sisal Textile Reinforced Composites (사이잘 섬유 강화 복합재료의 기계적 특성에 미치는 표면처리와 흡습의 영향)

  • Kim Hyo-Jin;Seo Do-Won;Pak Han-Ju;Jeon Yang-Bae;Lim Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.779-786
    • /
    • 2006
  • Woven sisal textile reinforced composites were manufactured to evaluate fracture toughness, and tensile test. All specimens were immersed in water five times. All specimens are immersed in pure water during 9 days at room temperature, and dried in 1 day at $50^{\circ}C$. Two kinds of polymer matrices such as epoxy and vinyl-ester were used. Fractured surface were investigated to study the failure mechanism and fiber/matrix interfacial adhesion. It is shows that it can be enhanced to improve their mechanical performance to reveal the relationship between fracture toughness and water absorption fatigue according to different polymer matrices. Water uptake of the epoxy composites was found to increase with cycle times. Mechanical properties are dramatically affected by the water absorption cycles. Water-absorbed samples observed poor mechanical properties such as lower values of maximum strength and extreme elongation. The $K_{IC}$ values demonstrate a decrease in inclination with increasing cyclic times of wetting and drying fur the epoxy and vinyl-ester.

Thermal Analysis and Optimum Design of Water-Cooled, Series-Flow Type, Double-Effect Absorption Heat Pump (수냉형 직렬방식 2중효용 흡수식 냉방기의 열해석과 최적 설계)

  • Oh, M.D.;Kim, Y.L.;Kim, S.C.;Kim, Y.I.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.332-341
    • /
    • 1992
  • An absorption heat pump cycle has been modeled and simulated to analyze the system performance of water-cooled, series-flow, double-effect absorption heat pump, which can be applied to a direct gas fired cooling system with the medium range of cooling capacity (15RT level). Effect of absorption cooling system parameters, such as concentration difference, inlet temperature of cooling water, 1st generator temperature, leaving temperature differences of condenser and evaporator and efficiency of solution heat exchanger, has been investigated in the view of system cooling performance.

  • PDF

Design of Absorption Pipe for Slope Stability (사면안정을 위한 지중 흡수관의 설계)

  • Cho, Hong-Je;Moon, Jong-Kyu;Lee, Kwang-Je
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.75-87
    • /
    • 2010
  • Incessant rainfalls in unsaturated soil raises pore water pressure and drops shear stress. Controlling pore water pressure in unsaturated soil prevents pressure increase and leads to slope stability. Laboratory experiment of pore water absorption in soil tank has been conducted for pore pressure decrease in soil slope under artifical rainfall supplied in varying rainfall indensities. Soil slope failure triggers the deepening of the wetting front to critical depth accompanied by decrease in matric suction induced by water infilteration. This paper addresses an experimental design for absorption pipe to prevent pore pressure increase in unsaturated soil slope from heavy rain. It is expected that absorption pipe will be widely used in unsaturated soil slope to strengthen slope stability.