• Title/Summary/Keyword: absorption of water

Search Result 3,256, Processing Time 0.031 seconds

Effective Absorption Capacity of Highly Absorptive Materials using Isothermal Calorimetry, Considering the Effect of Specific Surface Area (등온열량계를 사용한 고흡수성 재료의 유효흡수율 측정: 비표면적의 영향)

  • Lee, Bo Yeon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.49-56
    • /
    • 2018
  • The use of highly absorptive materials in cement-based materials is increasing for internal curing purpose. However, calculation of correct absorption capacity of such materials is not easy, which leads to change in the effective water-to-cement ratio of cement paste by either absorbing or releasing water. In this study, effective absorption capacity of a highly absorptive material was found using isothermal calorimetry. Moreover, the effect of specific surface area was investigated. It was found that the method was capable of finding effective water absorption capacity of activated carbon fiber. For the activated carbon fiber used in this research, the effect of specific surface area was negligible because the high BET surface area was due to micropores less than 1nm, which does not affect the rate of hydration curve. Thus, the effective absorption capacity of such materials can be found successfully using this method.

Prediction of Deterioration Rate for Composite Material by Moisture Absorption

  • Kim, Yun-Hae;An, Seung-Jun;Jo, Young-Dae;Bae, Chang-Won;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.296-302
    • /
    • 2010
  • If the fiber reinforced plastic is exposed to the moisture for a long period of time, most of moisture absorption occurs on the resin place, thus dropping cohesiveness between the molecules as the water molecules permeated between high molecular chains grant high molecular mobility and flexibility. Also as the micro crack occurs due to the permeation of moisture on the interface of glass fiber and epoxy resin, it is developed to the overall damage of interface place. Hence, the study on absorption is essential as the mechanical and physical properties of fiber reinforced composites are reduced. However, the study on absorption has the inconvenience needing to expose composite materials to fresh water or seawater for 1 month or up to 1 year. Therefore, this study has exposed fiber reinforced composites to fresh water and has developed a model with an accuracy of 98% after comparing the analysis value obtained by using ANSYS while basing on the experimental value of property decline by absorption and the basic properties of glass fiber and epoxy resin used in the experiment.

Approximate solutions on the absorption process of an aqueous LiBr falling film : effects of vapor flow (리튬브로마이드 수용액 유하액막의 흡수과정에 대한 근사 해법 : 증기 유동의 영향)

  • Kim, B.J.;Lee, C.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.144-152
    • /
    • 1997
  • Film absorption involves simultaneous heat and mass transfer in the vapor-liquid system. In the present work, the absorption process of water vapor by an aqueous soluton of LiBr flowing inside of the vertical tube was investigated. The continuity, momentum, energy and diffusion equations for the solution film and vapor were formulated in integral forms and solved numerically. The model could predict the film thickness, the pressure gradient, and the heat and mass transfer rate. Particularly the effects of vapor flow conditions on the absorption process were investigated in terms of the vapor Reynolds number. As the vapor Reynolds number increased, the shear stress at the vapor-solution interface also increased. Consequently solution film became thinner at higher vapor flowrate under the co-currentflow condition. Thinner film was capable of higher heat transfer to the wall and leaded to higher absorption rate of the water vapor into the solution film.

  • PDF

Fault Symptom Analysis and Diagnosis for a Single-Effect Absorption Chiller (흡수식 냉동시스템의 고장현상 분석과 진단)

  • Han, Dongwon;Chang, Young-Soo;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.587-595
    • /
    • 2015
  • In this study, fault symptoms were simulated and analyzed for a single-effect absorption chiller. The fault patterns of fault detection parameters were tabulated using the fault symptom simulation results. Fault detection and diagnosis by a process history-based method were performed for the in-situ experiment of a single-effect absorption chiller. Simulated fault modes for the in-situ experimental study are the decreases in cooling water and chilled water mass flow rates. Five no-fault reference models for fault detection of a single-effect absorption chiller were developed using fault-free steady-state data. A sensitivity analysis of fault detection using the normalized distance method was carried out with respect to fault progress. When mass flow rates of the cooling and chilled water decrease by more than 19.3% and 17.8%, respectively, the fault can be detected using the normalized distance method, and COP reductions are 6.8% and 4.7%, respectively, compared with normal operation performance. The pattern recognition method for fault diagnosis of a single-effect absorption chiller was found to indicate each failure mode accurately.

On the rate of absorption of the sized fabrics (푸새 직물의 흡습률에 관한 1연구)

  • 오화자
    • Journal of the Korean Home Economics Association
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 1985
  • This paper aims to examine the variety of the absorption of cotton, T/C and hemp fabrics seperately seperaterly sized by rice, wheat, potato, corn flour and pp.V.A.. Experimental variables occurring in the concentration of sizing agents, the water content of unsized fabrics and an iron temperature show the following results, 1. When fabrics sized, the rate of absorption increases according to the order of rice, corn, pp.V.A., potato, wheat flour for cotton fabrics, of rice, corn, pp.V.A., wheat, potato flour for hemp fabrics and of the rice, pp.V.A., potato, corn, wheat flour for T/C fabrics : rice flour shows an absorption rate highest among all the others mentioned above. 2. To a certain extent, the stronger the concentration of sizing agents, the higher the rate of absorption. 3. The higher fabrics density, the higher absorption rate. 4. The structure and hydrophilic property of the sized fabrics affect the rate of absorption. 5. The fabrics with water content of 20% before sizing it shows the rate of absorption highest. 6. An iron temperature after sizing fabrics shows the rate of absorption highest at the properest at the properest one : $180^{\circ}C$ for cotton, $150^{\circ}C$ for T/C and $200^{\circ}C$ for hemp fabrics.

  • PDF

Dimensional Change of Acetylated Hardwood (아세틸화 활엽수재의 치수변화 특성)

  • 한규성
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.2
    • /
    • pp.79-84
    • /
    • 2000
  • It is well-known fact that dimensional stability of wood is greatly enhanced by acetylation of wood. This dimensional stability results from bulking of the reacted acetate within the cell wall, which reduces further swelling when the modified woods come into contact with water or water vapor. The purpose of this research was to determine the water absorption and dimensional stability of the acetylated solid wood in liquid water and in humidity tests. Beech and red oak were acetylated. Moisture and water absorption of acetylated wood were quite dependent on weight percent gain(WPG). Antiswelling efficiency(ASE) was quite dependent on WPG, but was not dependent on species.

  • PDF

Simulation of Solar/Absorption Cooling Hybrid System and Examination of Its Operating Condition (태양열을 이용한 흡수식 냉방시스템의 시뮬레이션과 운전조건의 검토)

  • Her, Jae-Young;Lee, Sang-Yong
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 1985
  • Solar/absorption cooling system was analyzed and its operating condition was examined. For the system, the optimum size of absorption refrigerator and collector area should be determined. As the temperature of water supplied to the generator increases, the collector efficiency decreases whereas the coefficient of performance of absorption refrigerator increases up to a certain point, and vice versa for decreasing of the temperature of water supplied to the generator . Thus if the reeling load is given, the appropriate operating condition can be determined between the two opposing trends by simulation program. As an example of the simulation, the case of Jejudo province was studied. Under the conditions (such as weather data and prices of components, etc.) given en the sample calculation, the result shows that the optimum temperature of water supplied to the generator turned out to be $80.3^{\circ}C$, and still shows a large economical disadvantage in present stage compared to the case of conventional vapor compression cooling/heating combined heat pump system.

  • PDF

Chemical and Absorption Characteristics of Water-soluble Organic Carbon and Humic-like Substances in Size-segregated Particles from Biomass Burning Emissions

  • Yu, Jaemyeong;Yu, Geun-Hye;Park, Seungshik;Bae, Min-Suk
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.96-106
    • /
    • 2017
  • In this study, measurements of size-segregated particulate matter (PM) emitted from the combustion of rice straw, pine needles, and sesame stem were conducted in a laboratory chamber. The collected samples were used to analyze amounts of organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and ionic species. The light absorption properties of size-resolved water extracts were measured using ultraviolet-visible spectroscopy. A solid-phase extraction method was first used to separate the size-resolved HULIS fraction, which was then quantified by a total organic carbon analyzer. The results show that regardless of particle cut sizes, the contributions of size-resolved HULIS ($=1.94{\times}HULIS-C$) to PM size fractions ($PM_{0.32}$, $PM_{0.55}$, $PM_{1.0}$, and $PM_{1.8}$) were similar, accounting for 25.2-27.6, 15.2-22.4 and 28.2-28.7% for rice straw, pine needle, and sesame stem smoke samples, respectively. The $PM_{1.8}$ fraction revealed WSOC/OC and HULIS-C/WSOC ratios of 0.51 and 0.60, 0.44 and 0.40, and 0.50 and 0.60 for the rice straw, pine needle, and sesame stem burning emissions, respectively. Strong absorption with decreasing wavelength was found by the water extracts from size-resolved biomass burning aerosols. The absorption ${\AA}ngstr{\ddot{o}}m $ exponent values of the size-resolved water extracts fitted between 300 and 400 nm wavelengths for particle sizes of $0.32-1.0{\mu}m$ were 6.6-7.7 for the rice straw burning samples, and 7.5-8.0 for the sesame stem burning samples. The average mass absorption efficiencies of size-resolved WSOC and HULIS-C at 365 nm were 1.09 (range: 0.89-1.61) and 1.82 (range: 1.33-2.06) $m^2/g{\cdot}C$ for rice straw smoke aerosols, and 1.13 (range: 0.85-1.52) and 1.83 (range: 1.44-2.05) $m^2/g{\cdot}C$ for sesame stem smoke aerosols, respectively. The light absorption of size-resolved water extracts measured at 365 nm showed strong correlations with WSOC and HULIS-C concentrations ($R^2=0.89-0.93$), indicating significant contribution of HULIS component from biomass burning emissions to the light absorption of ambient aerosols.

evaluation of Performance Characteristic on Triple Effect Absorption Cycle (삼중효용 흡수사이클의 성능특성 평가)

  • 권오경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.782-791
    • /
    • 1998
  • This paper presents a computer simulation of five types of triple effect absorption cycles employ-ing the refrigerant absorbent combinations of NH3/LiNO3 low-pressure type NH3/LiNO3+H2O/LiBr binary two-stage type series flow cycle and two types of parallel flow cycle for H2O/LiBr. The absorption systems is investigated through cycle simulation to obtain the system characteristics with the cooling water inlet temperature approach temperature of absorber loss temperature of absorber and chilled water outlet temperature. The most important characteristic temperature of absorber and chilled water outlet temperature. The most important characteristic of NH3/LiNO3 low-pressure type and a NH3/LINO3+H2O/LiBr binary two-stage type is that it obtains a coefficient of performance higher than the sum of the performance coefficients of its part operating independently. As a result of this analysis the optimum designs and operating conditions were determined based on the operating conditions and the coefficient of performance.

  • PDF

Synthesis and Characterization of Sodium Acrylate and 2-Acrylamido-2- Methylpropane Sulphonate (AMPS) Copolymer Gels

  • Jassal, Manjeet;Chattopadhyay, Ritwik;Ganguly, Debojyoti
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.95-104
    • /
    • 2004
  • A series of superabsorbents based on acrylic acid (AA), sodium acrylate, 2-acrylamido-2-methylpropane sulphonic acid, N,N'-methylene bis-acrylamide (MBA) were prepared by inverse suspension polymerization. These hydrogels were further crosslinked on the surface with polyethylene glycol-600 (PEG-600). The water absorbency or swelling behaviors for these xerogels in water and 0.9% saline solutions, both under free condition and under load were investigated. Absorption characteristics of these hydrogels were found to depend on nature and concentration of crosslinker in the system. It was also found that the saline absorption was significantly improved as the incorporation of AMPS in the polymer was increased. The surface crosslinking introduced in the polymers was found to improve the absorption under load characteristics without lowering the free water absorption capacities of the polymer to a considerable extent.