• Title/Summary/Keyword: absorption loss

Search Result 601, Processing Time 0.033 seconds

Coated cysteamine, a potential feed additive for ruminants - An updated review

  • Muhammad Umar Yaqoob; Jia Hou;Li Zhe;Yingying Qi;Peng Wu;Xiangde Zhu;Xiaoli Cao;Zhefeng Li
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.161-172
    • /
    • 2024
  • For sustainable development, better performance, and less gas pollution during rumen fermentation, there is a need to find a green and safe feed additive for ruminants. Cysteamine (CS) is a biological compound naturally produced in mammalian cells. It is widely used as a growth promoter in ruminants because of its ability to control hormone secretions. It mainly controls the circulating concentration of somatostatin and enhances growth hormone production, leading to improved growth performance. CS modulates the rumen fermentation process in a way beneficial for the animals and environment, leading to less methane production and nutrients loss. Another beneficial effect of using CS is that it improves the availability of nutrients to the animals and enhances their absorption. CS also works as an antioxidant and protects the cells from oxidative damage. In addition, CS has no adverse effects on bacterial and fungal alpha diversity in ruminants. Dietary supplementation of CS enhances the population of beneficial microorganisms. Still, no data is available on the use of CS on reproductive performance in ruminants, so there is a need to evaluate the effects of using CS in breeding animals for an extended period. In this review, the action mode of CS was updated according to recently published data to highlight the beneficial effects of using CS in ruminants.

Accelerated Thermal Aging Test for Predicting Lifespan of Urethane-Based Elastomer Potting Compound

  • Min-Jun Gim;Jae-Hyeon Lee;Seok-Hu Bae;Jung-Hwan Yoon;Ju-Ho Yun
    • Elastomers and Composites
    • /
    • v.59 no.2
    • /
    • pp.73-81
    • /
    • 2024
  • In the field of electronic components, the potting material, which is a part of the electronic circuit package, plays a significant role in protecting circuits from the external environment and reducing signal interference among electronic devices during operation. This significantly affects the reliability of the components. Therefore, the accurate prediction and assessment of the lifespan of a material are of paramount importance in the electronics industry. We conducted an accelerated thermal aging evaluation using the Arrhenius technique on elastic potting material developed in-house, focusing on its insulation, waterproofing, and contraction properties. Through a comprehensive analysis of these properties and their interrelations, we confirmed the primary factors influencing molding material failure, as increased hardness is related to aggregation, adhesion, and post-hardening or thermal-aging-induced contraction. Furthermore, when plotting failure times against temperature, we observed that the hardness, adhesive strength, and water absorption rate were the predominant factors up to 120 ℃. Beyond this temperature, the tensile properties were the primary contributing factors. In contrast, the dielectric constant and loss tangent, which are vital for reducing signal interference in electric devices, exhibited positive changes(decreases) with aging and could be excluded as failure factors. Our findings establish valuable correlations between physical properties and techniques for the accurate prediction of failure time, with broad implications for future product lifespans. This study is particularly advantageous for advancing elastic potting materials to satisfy the stringent requirements of reliable environments.

Materialistic Characterization of Waste Egg Shell and Fundamental Studies for Its Application to Wastewater Treatment (폐달걀껍질의 활용을 위한 물성조사 및 폐수처리 응용에의 기초연구)

  • Kuh, Sung-Eun;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.733-742
    • /
    • 2000
  • Fundamental materialistic characterization and adsorption/neutralization behavior of waste egg shell for heavy metal ion have been studied for its application to wastewater treatment. To investigate the structural change and thermal decomposition characteristics of egg shell. X-ray diffraction and FT-IR analysis were conducted for egg shell treated at $105^{\circ}C$ and $700^{\circ}C$, respectively. For the result of FT-IR analysis, the sample treated at $700^{\circ}C$ showed a reduced C-O absorption band compared with that of egg shell treated at $105^{\circ}C$, which may be due to the $CO_2$ release. Unlike to the result of FT-IR analysis, the XRD patterns of egg shell were almost similar for the cases of $105^{\circ}C$ and $700^{\circ}C$ treatment. however, characteristic diffraction pattern of CaO was observed for $850^{\circ}C$ treatment, at which $CaCO_3$ is known to be completely converted to CaO. TGA/DTA analysis showed a slow decline in weight loss up to $600^{\circ}C$ and, for $600{\sim}800^{\circ}C$ range, the weight loss became drastic by reason of $CO_2$ discharge, which was accompanied by an appearance of major endothermic peak. The ratio of practical breakthrough time to ideal one, total transfer unit, and mass transfer coefficient were observed to be increased as the adsorption was progressed in a multiple-column fixed-bed reactor using egg shell as an adsorbent, which signified the distribution effect of mass transfer for continuous adsorption reaction. The neutralization effect of egg shell for several types of acidic wastewater made of different mineral acids was not much different from each other except for the case of $H_2SO_4$, for which the neutralization reaction was thought to be retarded by the formation of gypsum.

  • PDF

Characteristics of $CO_{2}$ Absorption and Degradation of Aqueous Alkanolamine Solutions in $CO_{2}$ and $CO_{2}-O_{2}$ System ($CO_{2}$$CO_{2}-O_{2}$ 시스템에서 알카놀아민류 흡수제를 이용한 $CO_{2}$ 흡수 및 흡수제 열화 특성)

  • Choi, Won-Joon;Lee, Jong-Seop;Han, Keun-Hee;Min, Byoung-Moo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.256-262
    • /
    • 2011
  • Amine can undergo irreversible reactions by $O_{2}$ and high temperature in amine scrubbing process and these phenomena are called "degradation". Degradation causes not only a loss of valuable amine, but also operational problems such as foaming, corrosion and fouling. In this study, using various chemical absorbents(MEA; monoethanolamine, AMP; 2-amino-2-methyl-1-propanol, DAM; 1,8-diamino-p-menthane), we examined the following variable. I) loading ratio of $CO_{2}$ at $50^{\circ}C$ and $120^{\circ}C$, ii) concentration variation and initial degradation rate constant of absorbent in $CO_{2}$ and $CO_{2}/O_{2}$ system, and iii) effect of degradation by $O_{2}$. The $CO_{2}$ loading of 20 wt% DAM was 400% and 270% higher than that of 20 wt% MEA and AMP at 50, respectively and was the largest the difference of $CO_{2}$ loading between absorption $(50^{\circ}C)$ and regeneration $(120^{\circ}C)$ condition. The initial degradation rate constant of 20 wt% DAM was $2.254{\times}10^{-4}cycle^{-1}$ which was slower than that of MEA $(2.761{\times}10^{-4}cycle^{-1})$ and AMP $(2.461{\times}10^{-4}cycle^{-1})$ in $CO_{2}$ system. Also, it was increased 30% by $O_{2}$ that effects on the degradation by $O_{2}$ was less than 100% increased. these degradation reactions was able to identify by formation of new peak in GC and FT-IR spectrum analysis.

Effect of High Calcium Diet on the Zinc and Copper Balance in Korean Female Adolescents (청소년기 여자에서 고칼슘 섭취가 아연과 구리 평형에 미치는 영향)

  • 최보영;남혜경;황용주;김선희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.5
    • /
    • pp.894-899
    • /
    • 2001
  • Intakes and excretions of zinc and copper were determined for 8 female adolescents (aged 16.4$\pm$0.5 y; body mass index 20.4$\pm$1.3kg/$m^2$; body fat 33.3$\pm$2.5%; bone mineral density of lumbar spine in L2-L4; 0.96$\pm$0.08g/$\textrm{cm}^2$) when they consumed diets basal and high in calcium for 6 days each. All subjects consumed a basal Ca diet containing 800 mg, Korean RDA level of the subjects, and a high Ca diet containing 1200mg, RDA plus 2 SDs of calcium intake. The diets provided 58% of energy intake as carbohydrate, 25% as fat, and 17% as protein. Food, urine and fecal samples were collected during the last 3 days of each feeding period and were assayed. Mean daily intakes on the basal and high calcium diets, respectively, were 6.57 and 6.37 mg for zinc and 910 and 812 $\mu\textrm{g}$for copper. Fecal excretion of copper and zinc in relation to intake was significantly greater on the high calcium than on the basal calcium diet. Hence, apparent absorption rate was significantly lowered from 98.7% on the basal calcium diet to 97.9% on the high calcium diet for zinc from 66.3% to 56.4% for copper, respectively. Urinary loss of copper was not detectable but that of zinc was 0.38mg on the basal diet and 0.47mg on the high calcium diet. Copper retention was 899$\pm$105$\mu\textrm{g}$/day on the basal calcium diet and 792$\pm$20.8$\mu\textrm{g}$/day on the high calcium diet, and zinc retention was 3.95$\pm$0.91mg/day and 3.11$\pm$0.89mg/day. Thus, copper and zinc retention was significantly decreased on the high calcium diet (p<0.05). Summarizing the results, apparent absorption and retention of zinc and copper were significantly decreased by calcium supplementation. Therefore, it is suggested that interactions among minerals should be considered in determining RDA.

  • PDF

Ventilation Effect of the Greenhouse with Folding Panel Type Windows (패널굴절방식 환기창 온실의 환기효과)

  • Kim, Jin-Young;Lee, Si-Young;Kim, Hyun-Hwan;Chun, Hee;Yun, In-Hak
    • Journal of Bio-Environment Control
    • /
    • v.11 no.1
    • /
    • pp.5-11
    • /
    • 2002
  • In this study, new development of natural ventilation window was accomplished to control environment of greenhouse with no use of farced ventilation during hot season. The ventilation effect of developed ventilation window was investigated in experimental greenhouse which was designed using side wall panel and folding type panel fur natural ventilation. Folding panel type ventilation window was designed to open upper part of the side wall and top of the roof using two hinges which are located bottom of the side wall and the roof panel to grab one side of each panels and guide the other side along with the guidance rail. Developed ventilation window has top ventilation part with maximum moving distance X=ι (1-cos$\theta$)=848.5 mm and side ventilation part with maximum moving distance Y=ι/2 $\times$sin$\theta$=1,184.4 mm at 45$^{\circ}$ of theoretical opening angle. It took 4.5 minutes to open roof vent fully and temperature at 1.2 and 0.8 m height decreased after 1 minute from starting opening and became equilibrium state maintaining 3-4$^{\circ}C$ difference after 2 minutes from complete opening. Air exchange rate was 15.2~39.3 h$^{-1}$ which was more than 10~15 h$^{-1}$ of continuous type and Venlo type greenhouse. The descent effect of temperature by ventilation windows was two times higher than Venlo type greenhouse.

Cooking Properties of Fresh Pasta Using Korean Wheat and Durum Rimachinata (우리밀과 Durum Rimachinata를 이용한 생면 파스타의 조리특성)

  • Kim, Yeon-Ju;Ju, Jong-Chan;Kim, Rae-Young;Kim, Won-Tae;Park, Jae-Hee;Chun, Soon-Sil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.10
    • /
    • pp.1474-1481
    • /
    • 2011
  • This study investigated the physicochemical characteristics of Korean wheat flour substituted for 0%, 15%, 30%, 45%, and 60% durum rimachinata wheat in order to develop a Korean wheat pasta suitable for consumer-preferred soft textures. The particles of Korean wheat that were less than 250 ${\mu}M$ were 87.03% of all particles, while 68.7% of durum rimachinata had particles more than 250 ${\mu}M$ in size. Durum rimachinata had more protein (13.84${\pm}$0.03) and ash (0.70${\pm}$0.02) than Korean wheat. In farinograph characteristics, water absorption, development time, stability, and weakness increased as the amounts of substituted Korean wheat flour increased. Also, the gelatinization characteristics of the amylograph exhibited an increase of gelatinization temperature and decrease in maximum viscosity. However, maximum viscosity was shown to be more than 550 B.U. until 30% of the substitution level of Korean wheat flour to durum rimachinata wheat. Also, it did not affect the texture of the noodle product. We could make pasta with softness and springiness with less than a 15% substitution level of Korean wheat flour due to similar characteristics in cooking properties such as weight, volume, water absorption, turbidity, and cooking loss when compared to the control. L and a values increased, and the b value decreased in color as substitution amounts of Korean wheat flour increased. The hardness and adhesiveness of cooking noodles was shown to be a low value at more than a 30% substitution level of Korean wheat flour, and springiness, gumminess, and chewiness all exhibited high values. In a sensory evaluation, overall acceptability was shown to have the highest score in control. More than 30% of substitution of Korean wheat flour showed high preferences. Therefore, 15% of the substitution level of Korean wheat flour could be adapted in dough and cooking properties for making pasta-substituted Korean wheat. However, a texture analyzer and sensory evaluation of cooked pasta was shown to have a good quality at more than 30% substitution level of Korean wheat flour.

Effects of Organic Ca Supplements on Ca Bioavailability and Physiological Functions in Ovariectomized Osteoporotic Model Rats (난소절제 골다공증 흰쥐모델에서 유기태 칼슘보충제가 칼슘 이용성과 생리기능에 미치는 영향)

  • Cho, Su-Jung;Park, Mi-Na;Kim, Hee-Kyong;Kim, Jae-Hong;Kim, Min-Ho;Kim, Wan-Sik;Lee, Yeon-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.665-672
    • /
    • 2011
  • We evaluated the effects of organic Ca supplements chelated with milk protein (CaMP) in ovariectomized osteoporotic rats. Eight week-old Sprague-Dawley female rats were ovariectomized and fed a low $CaCO_3$ diet (0.1%) for 4 weeks to create an osteoporotic model. At that point, L4-$CaCO_3$ rats were sacrificed and the rest of the rats were divided into 4 groups, each of which was fed an experimental diet for 4 weeks: low-$CaCO_3$ (0.1%; L8-$CaCO_3$) and CaMP at 3 Ca levels: low (0.1%; L8-CaMP), normal (0.5%; N8-CaMP), and high (1.5%; H8-CaMP). Daily weight gain, serum ALP, weight and breaking force of femurs, Ca content of the lumbar, and Ca absorption were measured. Daily weight gain increased in the N8-CaMP and H8-CaMP groups compared to the low Ca groups. The ALP activity in the CaMP-fed rats was significantly lower than in the $CaCO_3$-fed rats. Both breaking force and femur weight were higher in the N8-CaMP and H8-CaMP groups compared to the L8-$CaCO_3$ group. Ca content of the lumbar increased dose-dependently with Ca intake levels of CaMP. Ca absorption rates of the CaMP-fed rats increased more than that of the rats fed low Ca levels of $CaCO_3$. These results demonstrate that the CaMP supplement had positive effects on bone metabolism and Ca bioavailability in ovariectomized osteoporotic rats. Therefore, CaMP may be recommended as a useful Ca supplement to prevent bone loss in osteoporosis.

Fabrication and Photocatalytic Activity of TiO2 Nanofibers Dispered with Silica Nanoparticles (SiO2 나노입자가 분산된 TiO2 나노섬유의 제작 및 광촉매 특성 분석)

  • Choi, Kwang-Il;Lee, Woohyoung;Beak, Su-Wung;Song, Jinho;Lee, Sukho;Lim, Cheolhyun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.667-671
    • /
    • 2014
  • In this study, we suggest a facile method to control conditions of single component independently when preparing consisting two-component metal oxides nanofiber by simply dispersing nanoparticles in precursor solution. The well dispersed $SiO_2$ nanoparticles in $TiO_2$ nanofibers were successfully synthesized through a simple electrospinning process. The as-synthesized nanodfibers were investigated via FE-SEM, XRD and EDS for structural studies, furthermore, the analysis of UV-VIS and photocatalytic activity were carried out for demonstrate the effect of $SiO_2$ nanoparticles dispersed in $TiO_2$ nanofibers. As a result, $TiO_2$ nanofibres dispersed with $SiO_2$ nanoparticles have enhanced photocatalytic activity than that of $TiO_2$ nanofibres only. In this strategy, the introduction of $SiO_2$ nanoparticles in $TiO_2$ nanofibers were attribute to enlarge absorption in the visible region (380~440 nm). Additionally, $Br{\o}nsted$ acid sites generated in each metal oxide of Ti and Si increase OH radicals efficiently as well as it limit recombination loss by holding photogenerated electrons for high efficient photocatalytic activity.

Fabrication of Multiple-Frequency Exposure System for In Vitro Experiment (세포 실험용 다중 주파수 동시 노출 장치 제작)

  • Kim, Tae-Hong;Seo, Min-Gyeong;Mun, Ji-Yeon;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.213-219
    • /
    • 2012
  • Recently, we are simultaneously exposed by various electromagnetic sources due to an increase of mobile communication services. However, EMF(Electric, Magnetic and Electromagnetic Field) study has been performed mainly about only single frequency. The objective of this paper is to develop an multiple-frequency exposure system for in vitro experiment. The exposure unit for in vitro experiments was designed by radial transmission line type to get broadband characteristics to generate signals of CDMA at 836.5 MHz and WCDMA at 1950 MHz frequency simultaneously. The modulated signals were delivered to the conical antenna through amplifier, digital attenuator and RF combiner. SAR values were obtained by the averaged values of 3 measured values at 9 points in petri dish using the fiber optic temperature probe. The measured return loss was under -15 dB. For 1 W input power, the mean value and standard deviation of SAR were $0.105{\pm}0.019$ for the CDMA frequency and $0.262{\pm}0.055$ for the WCDMA frequency.