• 제목/요약/키워드: absorption heat transformer

검색결과 10건 처리시간 0.018초

메탄올-글리세린 계를 작동유체로 하는 변형흡수식 열펌프 설계 (Design of an Absorption Heat Transformer with Methanol-Glycerine System as a Working Fluid)

  • 정찬교;민병훈
    • 청정기술
    • /
    • 제11권1호
    • /
    • pp.13-19
    • /
    • 2005
  • 에너지 회수를 위한 변형 흡수 열펌프 연구를 메탄올-글리세린을 이용하여 수행하였다. 이 물질의 열역학 데이터를 이용하여 변형 흡수 열펌프의 이론적 열효율 값을 각 기관의 조업 조건에 따라서 계산하였다. $70-80^{\circ}C$의 산업 폐열 온도를 가지고 $40-50^{\circ}C$ 승온 시킬 때 열효율 값 0.4이상을 얻을 수 있었다.

  • PDF

프로세스 시뮬레이션에 의한 제 2종 흡수식 열펌프 성능에 관한 연구 (A Study on the Performance of an Absorption Heat Transformer with Process Simulation)

  • 조승연;김영인
    • 대한설비공학회지:설비저널
    • /
    • 제16권3호
    • /
    • pp.295-304
    • /
    • 1987
  • The purpose of this study is to develop a computer model for simulating the water-lit hium bromide absorption heat transformer (AHT) Including all major components and to find the flexibility in operation. The effect of source hot water temperature, cooling water temperature, useful hot water flow rate, cooling water flow rate and evaporator circulation flow rate were investigated. The coefficient of performance (COP), temperature boost $({\Delta}T\;=\;T_A\;-\;Ti)$ and concentration variations can be predicted. The performance study indicates that the performance of AHT increases for the waste hot water temperature increasing and with a decrease of the cooling water temperature. The effect on performances of useful hot water flow rape is significant except on temperature boost. Also the effects on performance of cooling water flow rate and evaporator circulation flow rate are small. It is shown that the computer program is valuable to predict the performance of absorp-tion heat transformer units at various working corditions.

  • PDF

폐온수 이용 제 2 종 흡수식 열펌프의 열역학적 설계해석 (Thermal Design Analysis of an Absorption Heat Transformer for using Waste Hot Water)

  • 강병하;김영인;이춘식
    • 대한설비공학회지:설비저널
    • /
    • 제14권4호
    • /
    • pp.285-292
    • /
    • 1985
  • A computer program for thermal design analysis has been developed to predict the performance of an absorption heat transformer. The effects of temperature boost, cooling water temperature and effectiveness of components on the performance were investigated. Not only the detailed thermodynamic states such as temperatures, concentration of the solution, and mass flow rate at each point of the process but also the heat transfer rate in each component could be easily determined with given input parameters. The system's coefficient of performance (COP) was seen to increase with increased effectiveness of components, decreased temperature boost of hot water, and decreased cooling water temperature. Even though the COP increases with increased effectiveness of the components, the variation in the COP is not substantial above certain values of the effectiveness. A reference design point can be selected on this basis.

  • PDF

제 2종 LiBr-H2O 흡수식 히트펌프의 운전 변수에 따른 성능 특성 수치 해석 (Effects of Operation Conditions on the Performance of Type II LiBr-H2O Absorption Heat Pump)

  • 윤준성;권오경;차동안;배경진;김인관;김민수;박찬우
    • 설비공학논문집
    • /
    • 제29권1호
    • /
    • pp.7-14
    • /
    • 2017
  • This study carried out a numerical analysis of the effects of hot waste water supply on the performance of a Type II absorption heat pump. There are two types of hot waste water supply, regular series flow and reverse series flow. Also it investigated the interaction between each type of flow and heat exchange solutions. As the effectiveness of heat exchange solutions increase, the steam generation and (COP) increase as well. If the effectiveness of a heat exchange solution is lower than 0.566, the steam generation rate of the reverse flow is lower than that of the regular series flow. A high effectiveness of heat exchange solution is therefore required to make a larger amount of steam in reverse series flow than with ordinary series flow. The COP difference between the two types of flow decreases with the increasing effectiveness of the heat exchange solution. Thus, a reverse flow type absorption heat pump can match the high steam generation rate and COP of the ordinary flow type when a highly effective heat exchange solution is applied.

메탄올-글리세린을 이용한 변형 흡수 열 펌프 연구 (Study on an Absorption Heat Transformer Using Methanol-Glycerine System)

  • 민병훈
    • 에너지공학
    • /
    • 제9권3호
    • /
    • pp.237-242
    • /
    • 2000
  • 에너지 회수를 위한 변형 흡수 열 펌프 연구를 메탄올-글리세린을 이용하여 수행하였다. 이 물질의 상 평형 열역학 데이터를 이용하여 변형 흡수 열 펌프의 이론적 성능계수 값을 각 기관의 조업 조건에 따라 계산하였다. 70~8$0^{\circ}C$의 공업 폐열 온도를 가지고 4$0^{\circ}C$ 온도상승 시킬 때 성능계수 50% 이상을 얻을 수 있었다.

  • PDF

1, 2종 흡수식 히트펌프의 작동 매체에 따른 성능 해석[I] (Thermodynamic Analysis of an Absorption Heat Pump System with New Working Pairs[I])

  • 원승호;이원용;정헌생
    • 설비공학논문집
    • /
    • 제1권3호
    • /
    • pp.219-227
    • /
    • 1989
  • Performance analysis of an absorption heat pump system for solar energy recovery has been done by computer simulation to find improved working pairs. Based on the thermodynamic analysis, the coefficient of performance and mass flow ratio have been calculated to compare two aqueous solutions [LiCl-water, $LiCi-CaCl_2-Zn(NO_3)_2$-water] which were developed for cooling by others, with the conventional LiBr-water solution. As a result of this analysis, the performances of the new aqueous solutions were found to be better than that of LiBr-water solution not only in cooling systems, but also in heating and in heat transformer systems. Their theoretical thermodynamic performance data were given here with.

  • PDF

Absorption cooling R&D in Europe

  • Kuhn, A.;Petersen, S.;Riebow, D.;Sahin, D.;Ziegler, F.
    • 대한설비공학회지:설비저널
    • /
    • 제33권3호
    • /
    • pp.50-57
    • /
    • 2004
  • This article reviews absorption cooling R&D in Europe from the viewpoint of fundamentals, cycle development and applications. The review contains information on R&D, predominantly of public projects in the field of sorption cooling. We report on research which is performed in Europe with some stress on Germany. There is progress in fundamentals, thermodynamic cycle design, and also applications. In the fundamentals part the discussion about thermodynamics, working pairs, and heat and mass transfer is reflected. Today's discussion on thermodynamic cycles is not very strong. Main focus is on special solid sorption cycles, compression­sorption hybrids, and open cycles, In the applications part the chilling business is the main issue. Some interest is given to the improvement of efficiency on and the adaptation to low temperature waste heat use, but the stress is on the use of solar energy as heat source. The area of heat pumping for heating purposes is less prominent but not at all negligible. Finally, industrial heat pumping involves the reverse cycle (heat transformer, heat pump type Ⅱ) also, but there is no significant activity.

  • PDF

냉매 열교환기 구성방법에 따른 제 2종 흡수식 히트펌프의 성능 특성 변화에 관한 연구 (Performance Characteristics of Type II LiBr-H2O Absorption Heat Pump in Accordance with the Refrigerant Heat Exchanger Configuration)

  • 이창현;윤준성;김인관;권오경;차동안;배경진;김민수;박찬우
    • 설비공학논문집
    • /
    • 제29권7호
    • /
    • pp.373-384
    • /
    • 2017
  • The objective of this study was to determine the effect of refrigerant heat exchanger on the performance of type II absorption heat pump performance using numerical analysis. Two heat exchange installation methods were used: solution to refrigerant and waste hot water to refrigerant. These methods were compared to the standard model of hot water flow without using refrigerant heat exchanger. When waste hot waters were bypassed to refrigerant heat exchanger, COP was not affected. However, steam mass generation rates were increased compared to those of the standard model. When solutions were bypassed to the refrigerant heat exchanger, results were different depending on the place where the solution rejoined. COP and steam mass generation rates were lower compared to those when waste heat water was passed to refrigerant heat exchanger. Thus, it is possible to obtain higher steam mass generation rates by using waste water and installing refrigerant heat exchanger.

설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010)

  • 한화택;이대영;김서영;최종민;김수민;권영철;백용규
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.