• Title/Summary/Keyword: absorption effect

Search Result 3,107, Processing Time 0.029 seconds

An Analysis on the Effect of Application on Vibration Isolation Liner of Elevator Guide Rail Bracket (엘리베이터 가이드 레일 브라켓의 방진라이너 적용효과에 관한 분석)

  • Roh, Seung-Kwon;Kim, Eundo;Oh, Jong-Seok;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.145-151
    • /
    • 2019
  • In this study, the effects were analyzed by applying the vibration absorption liner into the guide rail bracket as a part of method to reduce the vibration and noise on the high-rise apartment. As the result of vibration absorption liner performance, it was checked that the level of vibration and noise was reduced around 65.49% in the car side and around 90.05% in the counterweight side. Therefore, the vibration absorption effect by the vibration absorption liner of elevator guide rail bracket became fairly good. In case of the vibration absorption liner application, there was an effect on the reduction of 7.26 to 22.22% at hoistway section area, 3,840,000 to 9,780000 KRW at the cost of material and installation by comparing with the damping beam application. Also, in case of the vibration absorption liner application with light weight instead of damping beam with heavy weight, it was thought to become significant effect at preventing the safety from the accidents on installation site.

An Experimental Study on the Effect of Air Space on the Absorption Property of Composite Absorption System (배후공기층이 복합흡음구조의 흡음특성에 미치는 영향에 관한 실험적 연구)

  • Oh, Yang-Ki
    • KIEAE Journal
    • /
    • v.1 no.2
    • /
    • pp.47-54
    • /
    • 2001
  • Single sound absorbers such as porous materials, panels, and Helmholts resonators have limited performance with some extents of frequency region. For example, porous materials do not attenuate low frequency sounds, while panels do not absorb high frequency sounds. Composite absorption structure with coverings, porous materials, and air gaps are an alternative for wide band sound absorption. Slits, panels, perforated panels are those materials for coverings, glass wool, mineral wool, polyester, and polyurethane are frequently used porous materials. Air gap between the porous material and background surface is one of major factors which governs the absorption characteristics of composite absorption structures, especially in the low frequency area. Calculations and measurements show that the absorption coefficients of composite absorption structure, in mid and low frequency bands, are getting higher with increased air gaps. Perforated panels rather than slits and panels are good coverings with higher number as far as absorption coefficient is concerned. Perforated panels with porous materials and 37 cm of air gaps in background have high absorption coefficients for all frequency bands, above 0.7 to 1.0. All measurements are performed in reverberation chamber, Mokpo National University, according to ISO 354 and ISO 3382.

  • PDF

Effect of Seatangle and Seamustard Intakes on Carcinogen Induced DNA Adduct Formation and the Absorption of Calcium and Iron (다시마와 미역의 섭취가 발암물질에 의한 DNA 손상과 칼슘 및 철 흡수에 미치는 영향)

  • 성미경
    • Journal of Nutrition and Health
    • /
    • v.33 no.7
    • /
    • pp.717-724
    • /
    • 2000
  • A number of epidemiological studies has indicated lifestyles including dietary habits are closely related to the development of certain forms of cancer. These findings have led several investigators to identify the ways in which these factors mdulate the risk of cancer. Seaweeds are rich sources of non-digestible polysaccharides which possibly posses physiological functions. In vitro studies showed several components in seaweeds inhibit tumor cell growth and mutagenicity of known food mutagens. On the other hand non-digestible polysaccharides of different food sources negatively affect mineral nutrition by decreasing mineral absorption. The objectives of this study was to investigate the effect of major seaweed intake on azoxymethane(AOM) - induced DNA damage a known cancer initiation step and on apparent absorption of calcium and iron. To accomplish these objectives twenty five ICR mice were divided into five groups and fed one of the following diets for 10 days : control diet d, diet containing 10% water-soluble fraction of seamustard or seatangle diet containing 10% water-insoluble fraction of seamustard or seatangle. AOM was injected 6 hours before sacrifice and N7-methylated guanines from the colonic DNA were quantified using a gas chromatography -mass spectroscopy. Fecal samples were collected on days 4 and 8. Caclium and iron contents of the diets and feces were analyzed using an atomic absorption spectrophotometry to determine the apparent absorption of these minerals. Results are as follows. AOM-induced guanine methylation of colon was decreased in animals fed diets containing water-soluble fractions of seamustard or seatangle compared to those in animals fed control diet although only the seatnagle fed group showed statistically significant effect. Apparent calcium absorption was significantly reduced in animals fed diets containing water-insoluble fractions of seaweeds. Iron absorption was significantly decreased and negatively balanced in animals fed diets containing water-insoluble fractions of both seaweeds, and water-soluble fraction of seatangle. In conclusion, seamustard and seatangle intakes may effectively prevent colon tumorigenesis by reducing a carcinogen-induced DNA damages, and more mechanistic studies on possible role of seaweeds on carcinogenesis are required. Also, adverse effects of seaweed diets cintaming a large amount of polysaccharides on mineral nutrition should be carefully monitored.

  • PDF

The Effect of Geometrical Structure on the Moisture Transport Properties of Nonwoven Batting Materials (부직포 충전재의 구조적 특성이 수분전달 특성에 미치는 영향-단층구조와 이층구조 부직포의 비교-)

  • 김희숙;나미희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.6
    • /
    • pp.810-818
    • /
    • 2000
  • The purpose of this study was to analyze the effect of geometrical structure on the moisture transport properties of nonwoven batting materials. Two types of nonwovens were used such as single and double layered nonwovens. Steady and dynamic state water vapor transport properties were measured by absorption, evaporation and cobaltous chloride method respectively. The results of this study were as follows: 1) Geometrical structure affected water vapor evaporation, but there were no differences between single and double layered nonwovens in moisture absorption. Thickness and air permeability were influencing factor on water vapor transport rate. 2) Directionality of double layered nonwoven was observed both in steady and dynamic state moisture transport. There were differences between upper and lower layer of double layered nonwoven both in moisture absorption rate and color change by cobaltous chloride method. 3) In dynamic state of water vapor transport rate, single layered nonwoven reached more rapidly at the established relative humidity. It was confirmed that geometrical structure affected water vapor evaporation and hydrophilicity of fiber affected moisture absorption because there were much more water vapor transport rate by evaporation than absorption within the same period of time.

  • PDF

Absorption Behavior in the Body of Chitosan Oligosaccharide according to Molecular Weight; An In vitro and In vivo Study

  • Jang, Mi-Kyeong;Kang, Seong-Koo;Nah, Jae-Woon
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.937-941
    • /
    • 2006
  • Chitosan has a wide range of applications in biomedical materials as well as in dietary supplements. Chitosan oligosaccharide with free-amine group (COFa) is an improvement over traditional chitosan that lacks the usual impurities and materials detrimental to the body. Based on a previous study of water soluble chitosan (WSC, chitosan lactate), we investigated the molecular weight (Mw) - dependent absorption phenomena of COFa in vitro and in vivo with various Mws. The absorption of CO Fa was significantly influenced by its molecular weight. As Mw increases, the absorption decreases. The absorption profiles for 5 K COFa (Mw=5 kDa) were observed to be more than 10 times higher than those of high molecular weight chitosan (100 K HWSC Mw=100 kDa) in both in vitro and in vivo transport experiments. Furthermore, the in vitro transport experiment suggested that transcellular transport of the COFa (Mw <10 kDa) through Caco-2 cell layer could occur with a negligible cytotoxic effect. The COFas showed a cytotoxic effect on Caco-2 cells that was dependent on dose and Mw. COFa could be transported transcellularly through the Caco-2 cell layer.

Effect of Micronization on the Extent of Drug Absorption from Suspensions in Humans

  • Oh, Doo-Man;Rane L.Curl;Yong, Chul-Soon;Gordon L.Amidon
    • Archives of Pharmacal Research
    • /
    • v.18 no.6
    • /
    • pp.427-433
    • /
    • 1995
  • A microscopic mass balance approach has hsown that the initial saturation (Is), absorption number (An), dose number (Do), and dissolution number (Dn) are four fundamental dimensionless parameters that can be used to estimate the fraction dose absorbed (F)l of suspensions of poorly soluble drugs in humans. The dissolution number of a drug increases with decreasing its particle size. The effect of micronization on F for suspensions was investigated in terms of Dn. About 90% of maximal F can be achieved at $Dn{\approx}2$. Increasing the solubility of a drug results in better oral absorption through increasing Dn and decreasing the solubility of a drug results in better oral absorption through increasing Dn and decreasing Do. The fractions dose absorbed of digoxin, griseofulvin, and benoxaprofen agree with predicted F values sorbed by reducing particle size, while absorption of drugs with high Do and low Dn is limited by solubility and requires higher solubility to enhance the fraction dose absorbed in addition to micronization. Solubility at the physiological pH should be used for the estimation of the fraction dose absorbed.

  • PDF

The Effect of Moisture Absorption and Gel-coating Process on the Mechanical Properties of the Basalt Fiber Reinforced Composite

  • Kim, Yun-Hae;Park, Jun-Mu;Yoon, Sung-Won;Lee, Jin-Woo;Jung, Min-Kyo;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.148-154
    • /
    • 2011
  • Generally, strength degradation is caused by the absorption of moisture in composites. For this reason, a fracture is generated in the composites and traces of glass fiber degrade human health and physical damage is generated. Therefore, in this research, we studied the mechanical properties change of composites by moistureabsorption. The composites were manufactured with and without the Gel-coating process and were immersed in a moisture absorption device at $80^{\circ}C$ for more than 100 days. The mechanical properties of the moistureabsorption composites and the composites which dry after moisture-absorption were compared. The mechanical properties degradation of basalt fiber composites according to the result of the measurement of moistureabsorption was smaller than that of glass fiber composites by about 20%. In addition, the coefficient of moisture absorption was lower for the case of Gel-coating processing than the composites without the Gel-coating process by about 2% and it was deduced that Gel-coating did not have a significant effect on the mechanical properties.

Simulation of $H_2O/LiBr$ Triple Effect Absorption Systems with a Modified Reverse Flow

  • Jo, Young-Kyong;Kim, Jin-Kyeong;Kang, Yang-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.114-121
    • /
    • 2007
  • In this study, a modified reverse flow type, one of the triple effect absorption cycles, is studied for performance improvement. The cycle simulation is carried out by using EES(Engineering Equation Solver) program for the working fluid of $H_2O/LiBr$ solution. The split-ratios of solution flow rate, UA of each component, pumping mass flow rate of solution are considered as key parameters. The results show that the optimal SRH (split ratio of high side) and SRL (split ratio of low side) values are 0.596 and 0.521, respectively. Under these conditions, the COP is maximized to 2.1. The optimal pumping mass flow rate is selected as 3 kg/s and the corresponding UAEV A is 121 kW/K in the present system. The present simulation results are compared to the other literature results from Kaita's (2002) and Cho's (1998) triple effect absorption systems. The present system has a lower solution temperature and a higher COP than the Kaita's modified reverse flow, and it also gives a higher COP than the Cho's parallel flow by adjusting split ratios.

A Study on the COP Improvement of Absorption Chillers by Recovering Heat from the Condenser (응축기 배열회수에 의한 흡수식 냉동기의 고효율화에 관한 연구)

  • Park, Chan-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.738-744
    • /
    • 2006
  • In order to utilize the condensation heat of refrigerants in condenser on the absorption chiller system, the solution cooled condenser (SCC) was proposed using the weak solution of absorber as a cooling medium. The increase of COP with the increase of UA of the solution cooled condenser was approximately 0.009 in maximum with single effect one, and is about maximum 0.008 in occasion of double effect one with series flow compared to that without. In the case of heat exchanger, effectiveness is about 0.85, it's increments are 0.008 and 0.0072, respectively. And solution cooled condenser is more effective device in the single effect absorption system than double effect system for the principle of operation. On the other hand, as the solution split ratio increases when the value of UA is fixed, COP is increased and as the solution split ratio increases when the value of UA is fixed, COP is increased. If the flow rate of cooling water or the value of UA is reduced in order to increases the heat recovery of solution cooled condenser, heat recovery of solution cooled condenser is increased a little but COP is decreased as the system pressure is increased.

Comparison between Ursodeoxycholic Acid and Its ${\beta}-Cyclodextrin$ Inclusion Complex: in-vitro Dissolution, in-vivo Absorption and Choleretic Effect (우르소데옥시콜린산 및 이의 베타-시클로덱스트린 포접복합체간의 in-vitro 용출, in-vivo 흡수및 이담효과의 비교)

  • Lee, Seung-Yong;Chung, Youn-Bok;Han, Kun;Choi, Jung-Hyun
    • YAKHAK HOEJI
    • /
    • v.38 no.4
    • /
    • pp.372-378
    • /
    • 1994
  • Choleretic effect and absorption of ursodeoxycholic acid (UDCA) in rats were studied using UDCA alone and it's ${\beta}-cyclodextrin$ $({\beta}-CyD)$ inclusin complex (UDCA-IC). In spite of increase in solubility and dissolution rate, absorption of UDCA-IC was decreased compared with UDCA alone. Choleretic effect of UDCA-IC was also decreased. It looks that UDCA forms stronger inclusion complex with ${\beta}-CyD$ than any other drug or organic biological material. From this study, it was suggested that UDCA might be used as a new potential competing agent when inclusion complexes of drugs with ${\beta}-CyD$ were administered for the improvement of poor bioavailability.

  • PDF