• 제목/요약/키워드: absorption, mechanical strength

검색결과 420건 처리시간 0.027초

다양한 열습환경하에서 최외각층 변화에 따른 CFRP 모자형 부재의 압궤특성 (Collapse Characteristics of CFRP Hat Member with Outer Laminated Angle Changes under Hygrothermal Environment with Temperature Changes)

  • 양용준;황우채;양인영
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.243-249
    • /
    • 2014
  • Currently, CFRP composites are rapidly replacing steel plates, as they are lighter, stronger, and more elastic; however, they are poorly suited to hygrothermal and impact-collapsed environments because moisture can alter their molecule arrangement and chemical properties. In this study, environments are experimentally simulated in order to investigate changes in the moisture absorption inside a CFRP composite and to determine its weakest point. Moreover, changes in the moisture absorption ratio at temperatures of $60^{\circ}C$ and $80^{\circ}C$ are studied and compared in order to understand how changes in temperature affect moisture absorption inside CFRP composites. Results show that moisture absorption leads to a strength reduction of around 50%. In addition, the moisture absorption rate inside CFRP composites is shown to change rapidly with increasing temperature. Accordingly, it showed that the change in matrix also has a weak point.

저농도 페놀수지 주입처리에 의한 평죽판 개발(1) (Development of Compressed-flattened Bamboo Impregnated with Low Molecular Weight PF Resin(1))

  • 이화형;김관의
    • 한국가구학회지
    • /
    • 제12권2호
    • /
    • pp.29-38
    • /
    • 2001
  • This study was carried out to develope a new process of flattening bamboo pieces(3 months old) by two steps of utilizing microwave oven and hot press. Internode bamboo pieces were impregnated with low molecular weight phenol formaldehyde resin (PF) under vacuum of 76 cmHg, heated in a household microwave oven in 1 minute, pressed on the temperature of $145^{\circ}C$ by the hot press for 10 minute, and then cooled by the cold press in their flattened form. The physical and mechanical . Properties of compressed flattened bamboo were as follows: 1) PF1(Mw:427) and PF2(Mw:246) sol. met the success of flattening of internode bamboo pieces in both of P. bambusoides and P. nigra var. PF2 showed the more plasticity to flatten the bamboo than PFI. The PF2 sol. with low molecular weight(Mw:246) gave the more weight gain than that of PF1 in the equal concentration. PF1 of 5% (NVC) and PF2 of 10% (NVC) sol. gave the best result for physical and mechanical properties and from a economical view point. 2) The PFI of 5% (NVC) sol. with low molecular weight decreased the water absorption of 62-63% and increased the bending strength (MaR) of 80-90%, compression strength of 43-54%. 3) The PF2 of 10% (NVC) sol. with low molecular weight decreased the water absorption of 56-57% and increased the bending strength (MaR) of 64-86%, compression strength of 39-63%.

  • PDF

Mechanical and durability properties of marine concrete using fly ash and silpozz

  • Jena, T.;Panda, K.C.
    • Advances in concrete construction
    • /
    • 제6권1호
    • /
    • pp.47-68
    • /
    • 2018
  • This article reports the utilization of fly ash (FA) waste product from industry and silpozz which is an agro-waste from agriculture as an environmental friendly material in construction industry. The evaluation of strength and durability study was observed using FA and silpozz as a partial replacement of Ordinary Portland Cement (OPC). The studied parameters are compressive strength, flexural strength, split tensile strength and bond strength as well as the durability study involves the acid soluble chloride (ASC), water soluble chloride (WSC), water absorption and sorptivity. Scanning electron microscopy (SEM) and XRD of selected samples are also done. It reveals from the test results that the deterioration factor (DF) in compressive strength is 4% at 365 days. The DF of split tensile strength and flexural strength is 0.96% and 0.6% at 90 days respectively. The minimum slip is 1mm and 1.1mm after 28 days of testing bond strength for NWC and SWC sample respectively. The percentage decrease in bond strength is 10.35% for 28 days SWC samples. The pre-cast blended concrete samples performed better to chloride diffusion. Modulus of elasticity of SWC samples are also studied.The water absorption and sorptivity tests are conducted after 28 days of curing.

탄소섬유강화형 복합재료의 기계적 성질에 미치는 수환경의 영향 (The Influence of Water Environment on the Mechanical Properties of Carbon/Epoxy Reinforced Composite Materials)

  • 김귀식;박경석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권2호
    • /
    • pp.52-59
    • /
    • 1993
  • This study is investigated of tensile and fatigue strength for advanced composite materials under hygrothermal environment. The materials used are two types of Carbon/Epoxy reinforced composite materials i.e., 13$0^{\circ}C$ cure-type composite T-1/347, and 18$0^{\circ}C$ cure-type MM-1/982X. These are composed by cross-ply laminates. Test condition is the distilled water of 8$0^{\circ}C$. The separate absorption contents estimated by the Fick's diffusion rule are similar to the experiment results. The tensile strength of T-1/347 wet specimens more increased than that of dry ones, but that of MM-1/982X decreased. The fatigue strengthes of both T-1/347 and MM-1/982X wet specimen more decreased than those of dry specimens.

  • PDF

국내산(國內産) 대리석(大理石)의 지질공학적(地質工學的) 특성(特性) (Engineering Geological Properties of Some Domestic Marbles)

  • 정영욱;전효택
    • 자원환경지질
    • /
    • 제23권4호
    • /
    • pp.411-424
    • /
    • 1990
  • Mechanical, physical and petrographic properties of seventeen marble specimens collected from ten marble mines in Korea were investigated. Studied marbles were mainly composed of calcite, dolomite, and various amounts of serpentine, tremolite, olivine, quartz and opaque minerals. Complete and sutured textures were dominant. Compressive strength measured normal to the bedding plane is larger almost two times than that measured parallel to the bedding plane. From the results of Shore hardness test on marbles, water content was an important factor to decrease Shore hardness values. Engineering geological properties, especially, compressive strength, Young's modulus, wear resistance and water absorption could be controlled by the presence of quartz, and the type of marble texture. Water absorption-porosity, compressive strength-Young's modulus, and impact strength index-Los Angeles abrasion couples show good correlation. According to the comparative utility as commercial stone, it could be concluded that marbles from the Banglim mine, Songbo mine, Kwangdeok mine and Bongjeong mine were superior to that of other studied marbles.

  • PDF

Effect of length and content of steel fibers on the flexural and impact performance of self-compacting cementitious composite panels

  • Denise-Penelope N. Kontoni;Behnaz Jahangiri;Ahmad Dalvand;Mozafar Shokri-Rad
    • Advances in concrete construction
    • /
    • 제15권1호
    • /
    • pp.23-39
    • /
    • 2023
  • One of the important problems of concrete placing is the concrete compaction, which can affect the strength, durability and apparent quality of the hardened concrete. Therefore, vibrating operations might be accompanied by much noise and the need for training the involved workers, while inappropriate functioning can result in many problems. One of the most important methods to solve these problems is to utilize self-compacting cementitious composites instead of the normal concrete. Due to their benefits of these new materials, such as high tensile, compressive, and flexural strength, have drawn the researchers' attention to this type of cementitious composite more than ever. In this experimental investigation, six mixing designs were selected as a base to acquire the best mechanical properties. Moreover, forty-eight rectangular composite panels with dimensions of 300 mm × 400 mm and two thickness values of 30 mm and 50 mm were cast and tested to compare the flexural and impact energy absorption. Steel fibers with volume fractions of 0%, 0.5% and 1% and with lengths of 25 mm and 50 mm were imposed in order to prepare the required cement composites. In this research, the composite panels with two thicknesses of 30 mm and 50 mm, classified into 12 different groups, were cast and tested under three-point flexural bending and repeated drop weight impact test, respectively. Also, the examination and comparison of flexural energy absorption with impact energy absorption were one of the other aims of this research. The obtained results showed that the addition of fibers of longer length improved the mechanical properties of specimens. On the other hand, the findings of the flexural and impact test on the self-compacting composite panels indicated a stronger influence of the long-length fibers.

Fly Ash를 이용한 고령토벽돌의 소결 특성 (Microstructure and Mechanical Properties of the Sintered Kaolin Block with Fly Ashes)

  • 이진욱;이성민;김형태;최의석;이용석
    • 한국세라믹학회지
    • /
    • 제39권12호
    • /
    • pp.1164-1170
    • /
    • 2002
  • 고령토질 벽돌에 대한 fly ash의 첨가가 소결온도에 미치는 영향과 그에 따른 물성의 변화를 관찰하였다. Fly ash로는 탄소 8∼9%의 무연탄 연로 재를 사용하였고 고령토 등의 국산 천연원료를 이용하여 실험을 하였다. Fly ash와 고령토 등의 4종의 원료를 5가지의 혼합비로 조합하여 혼합, 성형하고 각각 1050${\circ}C$, 1100${\circ}C$, 1150${\circ}C$, 1200${\circ}C$의 온도로 소성하였다. 소성온도가 증가함에 따라 모든 시편에서 흡수율은 낮아지고 압축 강도는 증가하였다. 소성온도가 1100${\circ}C$ 이하인 경우 fly ash의 함량이 증가함에 따라 흡수율은 증가하고 강도가 감소하였다. 이에 비하여 소성온도가 1150${\circ}C$ 이상인 경우 흡수율은 소성온도가 낮은 경우와 유사한 경향을 보였으나 강도는 증가하였다.

경화공정 및 수분흡수에 따른 복합재료 하니콤 샌드위치 판넬의 접합강도특성 연구 (Bondline Strength Evaluation of Honeycomb Sandwich Panel For Cure Process and Moisture Absorption)

  • 최흥섭;전흥재;남재도
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.115-126
    • /
    • 2001
  • In this paper, through a series of comparative experiments, effects of two different cure processing methods, cocure and precure, on the mechanical properties of honeycomb core materials for aircraft applications are considered. Mass of moisture accumulated into the closed cells of the sandwich panel specimen from the measured mass of moisture diffused to the full saturation state into the elements(skin, adhesive layer, Nomex honeycomb), consisting the honeycomb sandwich specimen has been calculated. Water reservoir of 70$\^{C}$ was used to have specimens absorb moisture to see the influence of moisture absorbed into sandwich panel on its mechanical properties. For the repair condition holding for 2 hours at 177$\^{C}$(350℉) temperature, a pressure due to the vapor expansion in each cell of the sandwich panel, which may result in the local separation of the interface between laminated skin and the surface of the honeycomb, has been estimated by vapor pressure-temperature relation from the thermodynamic steam table and compared to the pressure from the ideal gas state equation. The bonding strengths of the laminated skins on the flat surface of the Nomex honeycomb have been compared by the flatwise tension test and climbing drum peel test performed at room temperature for dry, wet and wet-repair specimens, respectively.

열처리에 따른 다공성 알루미늄 합금 재료의 미세구조와 기계적 성질 변화 (Evolution of Microstructure and Mechanical Properties of Porous Al Alloy Under Various Heat Treatment)

  • 류관무;권영재;김준규;조원승;조남희;황진명;유연철
    • 소성∙가공
    • /
    • 제12권6호
    • /
    • pp.588-596
    • /
    • 2003
  • The relationships between evolution of microstructure and mechanical properties of porous Al-3Si-2Mg-2Cu alloy after the foaming and various heat treating were investigated. The foamed alloy having various densities were manufactured by powder compact foaming and heat treated. Then compression test was performed with deformation rate of 0.5/s. The ultimate compression strength was not changed after solution heat treatment but the flow curve after ultimate strength showed very smooth and uniform plateau region. This change of flow curve means that the deformation mechanism is altered from brittle fracture to ductile deformation and the energy absorption property of Al foam is dramatically improved. The improvement of energy absorption without any detriment of mechanical properties is due to that the very brittle precipitation like Al-Cu and Al-Mg was uniformly dissolved in Al matrix after solution heat treatment. And various mechanical properties of Al alloy porous material were improved by 40% with aging of $200^{\circ}C$ and 50min. These improvements are ascribe to the various fine precipitates like $\Omega$ and $\theta$'.

대나무/폴리락틱산 바이오복합재료의 기계적, 열적, 충격 및 수분흡수 특성에 미치는 대나무섬유 분쇄의 영향 (Effect of Bamboo Fiber Grinding on the Mechanical, Thermal, Impact, and Water Absorption Properties of Bamboo/Poly(lactic acid) Biocomposites)

  • 조용범;조동환
    • 접착 및 계면
    • /
    • 제13권3호
    • /
    • pp.121-130
    • /
    • 2012
  • 본 연구에서는 대나무섬유의 분쇄 유 무에 따라 섬유함량이 각각 30, 40, 50 wt%인 대나무/PLA 펠렛을 압출공정으로 제조하고 사출공정을 통해 대나무/PLA 바이오복합재료를 성형하여 그들의 기계적, 열적, 충격 특성과 수분흡수성을 조사하였다. 대나무/PLA 바이오복합재료의 굴곡탄성률, 인장탄성률, 저장탄성률 및 충격강도는 neat PLA에 비하여 두드러지게 증가되었다. 특히 탄성률은 분쇄된 대나무섬유의 도입에 의하여 더욱 증가하였다. 또한 분쇄한 대나무섬유의 사용이 바이오복합재료의 장시간 동안 측정한 수분에 대한 저항성 증가에 효과적이었다. 대나무섬유의 사용이 neat PLA의 열변형온도를 약 16% 향상시키는 효과를 나타내었으나, 분쇄된 대나무섬유의 사용에 의한 증가는 미미하였다. 분쇄된 대나무섬유의 사용은 바이오복합재료의 인장강도와 충격강도에는 크게 영향을 주지 않았다.