• 제목/요약/키워드: absolute model accuracy

검색결과 267건 처리시간 0.024초

Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs

  • Perumal, Ramadoss;Prabakaran, V.
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.479-488
    • /
    • 2020
  • The experimental and numerical works were carried out on high performance fiber reinforced concrete (HPFRC) with w/cm ratios ranging from 0.25 to 0.40, fiber volume fraction (Vf)=0-1.5% and 10% silica fume replacement. Improvements in compressive and flexural strengths obtained for HPFRC are moderate and significant, respectively, Empirical equations developed for the compressive strength and flexural strength of HPFRC as a function of fiber volume fraction. A relation between flexural strength and compressive strength of HPFRC with R=0.78 was developed. Due to the complex mix proportions and non-linear relationship between the mix proportions and properties, models with reliable predictive capabilities are not developed and also research on HPFRC was empirical. In this paper due to the inadequacy of present method, a back propagation-neural network (BP-NN) was employed to estimate the 28-day compressive strength of HPFRC mixes. BP-NN model was built to implement the highly non-linear relationship between the mix proportions and their properties. This paper describes the data sets collected, training of ANNs and comparison of the experimental results obtained for various mixtures. On statistical analyses of collected data, a multiple linear regression (MLR) model with R2=0.78 was developed for the prediction of compressive strength of HPFRC mixes, and average absolute error (AAE) obtained is 6.5%. On validation of the data sets by NNs, the error range was within 2% of the actual values. ANN model has given the significant degree of accuracy and reliability compared to the MLR model. ANN approach can be effectively used to estimate the 28-day compressive strength of fibrous concrete mixes and is practical.

ANN 및 SVM을 사용하여 투과 유량을 예측하는 동적 막 여과 공정 모델링 (Modeling of a Dynamic Membrane Filtration Process Using ANN and SVM to Predict the Permeate Flux)

  • 수피안 라데그;모하메드 무사우이;마마르 라이디;나지 물라이-모스테파
    • 멤브레인
    • /
    • 제33권1호
    • /
    • pp.34-45
    • /
    • 2023
  • 본 연구에서는 투과 유량 모델을 개발하기 위하여, 시간, 막 전후의 압력 차, 회전 속도, 막의 기공 크기, 동점도, 농도 및 공급 유체의 밀도 등 7개의 입력 변수에 기반한 두 종류(ANN 및 SVM) 인공지능 기법을 이용하였다. 시행착오법과 실험데이터와 예측 데이터 간의 결정 계수(R2) 와 평균절대상대편차(AARD)를 포함한 두 가지 통계 변수를 통해 최적의 모델을 선정하였다. 최종적으로 얻어진 결과에서 최적화된 ANN 모델이 R2 = 0.999 및 AARD% = 2.245인 투과 플럭스 예측 정확도를 보여서, R2 = 0.996 및 AARD% = 4.09의 정확도를 보인 SVM 모델에 비해 더 정확함을 알 수 있었다. 또한, ANN 모델은 SVM 방식에 비해 투과 유속을 예측하는 능력도 더 높은 것으로 나타났다.

앙상블 러닝 기반 동적 가중치 할당 모델을 통한 보험금 예측 인공지능 연구 (Research on Insurance Claim Prediction Using Ensemble Learning-Based Dynamic Weighted Allocation Model)

  • 최종석
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.221-228
    • /
    • 2024
  • 보험금 예측은 보험사의 리스크 관리와 재무 건전성 유지를 위한 핵심 과제 중 하나이다. 정확한 보험금 예측을 통해 보험사는 적정한 보험료를 책정하고, 예상 외의 손실을 줄이며, 고객 서비스의 질을 향상시킬 수 있다. 본 연구에서는 앙상블 러닝 기법을 적용하여 보험금 예측 모델의 성능을 향상시키고자 한다. 랜덤 포레스트(Random Forest), 그래디언트 부스팅 머신(Gradient Boosting Machine, GBM), XGBoost, Stacking, 그리고 제안한 동적 가중치 할당 모델(Dynamic Weighted Ensemble, DWE) 모델을 사용하여 예측 성능을 비교 분석하였다. 모델의 성능 평가는 평균 절대 오차(MAE), 평균 제곱근 오차(MSE), 결정 계수(R2) 등을 사용하여 수행되었다. 실험 결과, 동적 가중치 할당 모델이 평가 지표에서 가장 우수한 성능을 보였으며, 이는 랜덤 포레스트와 XGBoost, LR, LightGBM의 예측 결과를 결합하여 최적의 예측 성능을 도출한 결과이다. 본 연구는 앙상블 러닝 기법이 보험금 예측의 정확성을 높이는 데 효과적임을 입증하며, 보험업계에서 인공지능 기반 예측 모델의 활용 가능성을 제시한다.

디지털 구강스캐너로 모형 없이 제작한 전부지르코니아 수복물의 변연 및 내면 적합도 평가 (Evaluation of marginal and internal gap under model-free monolithic zirconia restoration fabricated by digital intraoral scanner)

  • 이종원;박지만
    • 대한치과보철학회지
    • /
    • 제54권3호
    • /
    • pp.210-217
    • /
    • 2016
  • 목적: 본 연구의 목적은 실제 환자에서 디지털 구강스캐너로 모형 없이 제작한 보철물의 변연 및 내면 적합도를 평가하는 것이다. 대상 및 방법: 전향적 임상시험으로 시행한 본 예비 연구는 총 11개의 수복물을 대상으로 하였다. 구강스캐너(TRIOS, 3shape, Copenhagen, Denmark)로 디지털 구강인상을 채득한 후, 캐드 디자인 및 밀링 가공 과정을 통해 전부지르코니아 수복물을 제작하였다. 완성된 지르코니아관을 환자 구강 내에 시적하였고, 레플리카 술식으로 보철물-지대치 복제물을 얻었다. 이를 근원심, 협설 방향으로 잘라 변연오차, 변연간극과 축벽부, 선각부, 교합면부의 내면간극을 측정하였다. 통계처리는 Kruskal-Wallis 검정과 Mann-Whitney U 검정을 이용하여 통계적 유의성을 분석하였다(${\alpha}=.05$). 결과: 복제물을 통한 적합도 분석 결과, 근원심, 협설 절편 사이에는 통계적으로 유의한 차이가 없었다(P>.05). 변연간극에 불일치가 있었으며, 변연 오차가 변연간극 보다 컸다(P<.01). 결론: 본 연구의 한계 내에서, 구강스캐너로 모형 없이 제작한 전부지르코니아 수복물의 적합도는 임상적으로 허용할만한 결과를 보였다. 그러나 지르코니아관의 변연부위가 과풍융되는 경향이 있었으므로 주의 깊은 임상 적용 및 추적 연구가 요구된다.

초분광 근적외선 영상 기술을 이용한 흙의 함수비 측정 기술 (Soil Water Content Measurement Technology Using Hyperspectral Visible and Near-Infrared Imaging Technique)

  • 임환희;전에녹;이득환;전준서;이승래
    • 한국지반공학회논문집
    • /
    • 제35권11호
    • /
    • pp.51-62
    • /
    • 2019
  • 본 연구에서는 초분광 근적외선 영상을 이용하여 광역지역의 흙의 함수비 변화를 간편한 방법으로 예측하기 위해 수행되었다. 근적외선(VNIR) 영역대에서 변화되는 함수비 별로 모래, 화강풍화토(우면산, 구룡산, 대모산, 황령산), 카오리나이트를 초분광 카메라로 촬영하여 반사율을 추출하였고, 흙의 함수비와 가장 연관성 높은 매개변수를 찾기 위하여 선정된 매개변수와 함수비를 변수로하여 Partial Least Square Regression(PLSR) 분석을 이용하여 함수비 예측모델을 구축하였다. 함수비 예측모델을 구축한 결과, 흙의 종류에 관계없이 Area of reflectance(Near-infrared, NIR)의 매개변수가 흙의 함수비와 가장 연관성 높은 매개변수임을 확인하였고, 모든 흙에서 예측모델의 정확도(R2)는 0.9 이상임을 확인하였다. 또한 흙의 실제 함수비와 비교 검증해본 결과, 평균절대백분율(mean absolute percentage error, MAPE)이 15%이내로 확인되었다. 따라서 대상 흙들에서 50% 이내에서 변화되는 함수비 예측 가능성을 확인하였다. 본 연구를 통해 초분광 근적외선 영상을 이용하여 모래, 화강풍화토, 카오리나이트의 함수비 예측 가능성을 확인하였고, 모델의 정확도 개선 및 더 높은 범위의 함수비 예측을 위해서는 흙의 분류모델 개발이 추가적으로 필요하다고 판단된다.

상대위상을 이용한 시각적 협응 패턴의 지각 역학과 격자무늬를 이용한 부가적 감각 정보에 따른 영향 (Visual Perception Dynamics of Relative Phase Coordination Pattern with Additional Visual Information Using a Background Grid)

  • 류영욱
    • 인지과학
    • /
    • 제23권3호
    • /
    • pp.409-424
    • /
    • 2012
  • 본 연구의 목적은 상대적 위상을 이용한 시각적 협응 패턴의 지각이 조절변수의 변화에 따라 HKB 모델(Haken, Kelso, Bunz, 1985)의 예측에 따르는지 확인해 보는 것이었다. 또한 격자무늬 배경을 이용한 부가적인 시각 정보가 협응 패턴 분별의 정확성과 안정성을 향상시키는지 알아보았다. 피험자들은 일반 배경과 격자 배경 중 하나의 그룹에 속하여 패턴 지각 연습과 패턴 분별 시험을 하였다. 피험자들은 좌우로 이동하는 두 점 사이의 상대위상으로 정의된 $0^{\circ}$, $18^{\circ}$, $36^{\circ}$, $54^{\circ}$, $72^{\circ}$, $90^{\circ}$, $108^{\circ}$, $126^{\circ}$, $144^{\circ}$, $162^{\circ}$, $180^{\circ}$ 패턴을 관찰하였다. 패턴 지각 연습은 두 점의 진동 주기 0.25 Hz에서 시행되었고, 패턴 분별 시험은 0.5 Hz, 1 Hz, 2 Hz에서 시행되었다. 패턴 분별 시험에서 얻은 분별 점수, 절대 분별 오차, 분별 안정성 자료를 통계적으로 분석하였다. 분별의 정확성과 안정성은 진동 주기가 느릴 때는 "뒤집어진 U" 모양을 띄다가 진동 주기가 빨라짐에 따라 $180^{\circ}$ 상대위상 패턴에 가까운 패턴들에서 정확성과 안정성이 감소하였다. 이러한 발견은 협응 패턴의 지각적 분별 역학이 HKB 모델을 따름을 나타낸다. 부가적 환경 정보인 격자무늬가 협응 패턴 분별의 정확성과 안정성에 도움은 되지 못하였다.

  • PDF

CNN-LSTM 딥러닝 기반 캠퍼스 전력 예측 모델 최적화 단계 제시 (Proposal of a Step-by-Step Optimized Campus Power Forecast Model using CNN-LSTM Deep Learning)

  • 김예인;이세은;권용성
    • 한국산학기술학회논문지
    • /
    • 제21권10호
    • /
    • pp.8-15
    • /
    • 2020
  • 딥러닝을 사용한 예측 방법은 동일한 예측 모델과 파라미터를 사용한다 하더라도 데이터셋의 특성에 따라 결과가 일정하지 않다. 예를 들면, 데이터셋 A에 최적화된 예측 모델 X를 다른 특성을 가진 데이터셋 B에 적용하면 데이터셋 A와 같이 좋은 예측 결과를 기대하기 어렵다. 따라서 높은 정확도를 갖는 예측 모델을 구현하기 위해서는 데이터셋의 성격을 고려하여 예측 모델을 최적화하는 것이 필요하다. 본 논문에서는 하루 대학 캠퍼스 전력사용량을 1시간 단위로 예측하기 위해 데이터셋의 특성이 고려된 예측 모델이 도출되는 일련의 방법을 단계적으로 제시한다. 데이터 전처리 과정을 시작으로, 이상치 제거와 데이터셋 분류 과정 그리고 합성곱 신경망과 장기-단기 기억 신경망이 결합된 알고리즘(CNN-LSTM: Convolutional Neural Networks-Long Short-Term Memory Networks) 기반 하이퍼파라미터 튜닝 과정을 소개한다. 본 논문에서 제안하는 예측 모델은, 각 시간별 24개 포인트에서 2%의 평균 절대비율 오차(MAPE: Mean Absolute Percentage Error)를 보인다. 단순히 예측 알고리즘만을 적용한 모델과는 달리, 단계적 방법을 통해 최적화된 예측 모델을 사용하여 단일 전력 입력 변수만을 사용해서 높은 예측 정확도를 도출한다. 이 예측 모델은 모바일 에너지관리시스템(Energy Management System: EMS) 어플리케이션에 적용되어 관리자나 소비자에게 최적의 전력사용 방안을 제시할 수 있으며 전력 사용 효율 개선에 크게 기여할 것으로 기대된다.

Pure additive contribution of genetic variants to a risk prediction model using propensity score matching: application to type 2 diabetes

  • Park, Chanwoo;Jiang, Nan;Park, Taesung
    • Genomics & Informatics
    • /
    • 제17권4호
    • /
    • pp.47.1-47.12
    • /
    • 2019
  • The achievements of genome-wide association studies have suggested ways to predict diseases, such as type 2 diabetes (T2D), using single-nucleotide polymorphisms (SNPs). Most T2D risk prediction models have used SNPs in combination with demographic variables. However, it is difficult to evaluate the pure additive contribution of genetic variants to classically used demographic models. Since prediction models include some heritable traits, such as body mass index, the contribution of SNPs using unmatched case-control samples may be underestimated. In this article, we propose a method that uses propensity score matching to avoid underestimation by matching case and control samples, thereby determining the pure additive contribution of SNPs. To illustrate the proposed propensity score matching method, we used SNP data from the Korea Association Resources project and reported SNPs from the genome-wide association study catalog. We selected various SNP sets via stepwise logistic regression (SLR), least absolute shrinkage and selection operator (LASSO), and the elastic-net (EN) algorithm. Using these SNP sets, we made predictions using SLR, LASSO, and EN as logistic regression modeling techniques. The accuracy of the predictions was compared in terms of area under the receiver operating characteristic curve (AUC). The contribution of SNPs to T2D was evaluated by the difference in the AUC between models using only demographic variables and models that included the SNPs. The largest difference among our models showed that the AUC of the model using genetic variants with demographic variables could be 0.107 higher than that of the corresponding model using only demographic variables.

교차검증과 SVM을 이용한 도시침수 위험기준 추정 알고리즘 적용성 검토 (Applicability study on urban flooding risk criteria estimation algorithm using cross-validation and SVM)

  • 이한승;조재웅;강호선;황정근
    • 한국수자원학회논문집
    • /
    • 제52권12호
    • /
    • pp.963-973
    • /
    • 2019
  • 본 연구는 도시침수 위험기준이 산정되지 않은 지역의 예·경보 기준을 예측하기 위해 유역특성 자료와 피해이력 기반으로 산정된 한계강우량을 활용하여 도시침수 위험기준을 추정하는 모델을 검토하였다. 위험기준 추정모델은 머신러닝 알고리즘의 하나인 Support Vector Machine을 이용하여 설계하였으며, 학습자료는 지역별 한계강우량과 유역특성으로 구성하였다. 학습자료는 정규화 한 후 SVM 알고리즘에 적용하였으며, SVM에 적용시 Leave-One-Out과 K-fold 교차검증 알고리즘을 이용하여 절대평균오차와 표준편차를 계산한 후 모델의 성능을 평가하였다. Leave-One-Out의 경우 표준편차가 작은 모델이 최적모델로 선정되었으며, K-fold의 경우 fold의 개수가 적은 모델이 선정되었다. 선정된 모델의 지속시간별 평균 정확도는 80% 이상으로 나타나 침수 위험기준 추정을 위해 SVM을 활용가능 할 것으로 판단된다.

북서태평양 태풍 강도 예측 컨센서스 기법 (A Consensus Technique for Tropical Cyclone Intensity Prediction over the Western North Pacific)

  • 오유정;문일주;이우정
    • 대기
    • /
    • 제28권3호
    • /
    • pp.291-303
    • /
    • 2018
  • In this study, a new consensus technique for predicting tropical cyclone (TC) intensity in the western North Pacific was developed. The most important feature of the present consensus model is to select and combine the guidance numerical models with the best performance in the previous years based on various evaluation criteria and averaging methods. Specifically, the performance of the guidance models was evaluated using both the mean absolute error and the correlation coefficient for each forecast lead time, and the number of the numerical models used for the consensus model was not fixed. In averaging multiple models, both simple and weighted methods are used. These approaches are important because that the performance of the available guidance models differs according to forecast lead time and is changing every year. In particular, this study develops both a multi-consensus model (M-CON), which constructs the best consensus models with the lowest error for each forecast lead time, and a single best consensus model (S-CON) having the lowest 72-hour cumulative mean error, through on training process. The evaluation results of the selected consensus models for the training and forecast periods reveal that the M-CON and S-CON outperform the individual best-performance guidance models. In particular, the M-CON showed the best overall performance, having advantages in the early stages of prediction. This study finally suggests that forecaster needs to use the latest evaluation results of the guidance models every year rather than rely on the well-known accuracy of models for a long time to reduce prediction error.