• Title/Summary/Keyword: abrasive

Search Result 996, Processing Time 0.026 seconds

Comparative Antimutagenic and Antioxidative Activities of Rice with Different Milling Fractions (도정분획별 쌀의 항돌연변이 및 항산화 활성)

  • Chun, Hyang-Sook;You, Jung-Eun;Kim, In-Ho;Cho, Jung-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1371-1377
    • /
    • 1999
  • Antimutagenic and antioxidative activities in the different milling fraction of rice(Oryza sativa L., illpumbyeo) were investigated. Twelve milling fractions including embryo, bran(I, II, III, IV and all) and milled rice(I, II, III, IV and V) and were obtained by abrasive milling. Antimutagenic effects of milling fraction against Trp-P-2-induced mutagenicity were shown as ${\approx}0%$ for embryo fraction, $27{\sim}86%$ for bran fractions and $64{\sim}95%$ for milled rice fractions in salmonela typhimurium reversion assay. Milled rice V, inner fraction with 80.9% milling yields, showed the highest antimutagenic activity among milling fractions Antioxidative activity, measured by peroxide value(POV) of different milling fractions was higher in embryo(28%) and bran fractions ($25{\sim}34%)$ than milled rice fractions($6{\sim}22%)$. In terms of thiobarbituric acid(TBA). embryo. bran and milled rice fractions exhibited 14, $5{\sim}21\;and \;6{\sim}20%$ antioxidative activity, respectively. Antioxidative activity, measured by electron donating ability(EDA), was 45% for embryo fraction. $35{\sim}40%$ for bran fractions and $41{\sim}65%$ for milled rice fractions. Antimutagenic activity if milling fractions was correlated with POV (r=-0.471, p<0.01) and EDA (r = 0.609, p<0.001) but not correlated with TBA. Contents of total phenolic acid and SH were higher in bran and embryo fractions than in milled rice fractions, and were reversely correlated with antimutagenic activity (r=-0.523 and -0.451. respectively, p<0.05).

  • PDF

Alternative Pretreatment Methods for Resin Infiltration in Primary Anterior Teeth (유전치 Resin Infiltration을 위한 표면처리 방법의 대안)

  • Lee, Eungyung;Shin, Jonghyun;Kim, Jiyeon;Jeong, Taesung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.2
    • /
    • pp.179-184
    • /
    • 2018
  • Resin infiltration has been used as a treatment option for the management of early caries lesions recently. However, the etching procedure with hydrochloric acid might be somewhat stressful for the clinicians due to safety problem especially for young children, leading to less utility. This study aims at searching for some alternative surface pretreatment methods of resin infiltration for the early caries lesions in primary anterior teeth by comparing penetration depth of various methods. No significant difference was found in penetration ratio between etched surface with 15% hydrochloric acid and 35% phosphoric acid. However, the penetration ratio was significantly higher in groups pretreated either with dental pumice or abrasive metal strip (p < .05). By the result of this study, etching with phosphoric acid as an alternative of hydrochloric acid was thought clinically acceptable as a pretreatment method for resin infiltration in early caries lesions for primary anterior teeth. It was notable that surface conditioning with dental pumice or metal strip before etching was effective in increasing the penetration. This procedural modification might be much more correspondent with minimally invasive concept and hopefully contribute to increased safety and utility in pediatric dentistry.

Particle Removal on Buffing Process After Copper CMP (구리 CMP 후 버핑 공정을 이용한 연마 입자 제거)

  • Shin, Woon-Ki;Park, Sun-Joon;Lee, Hyun-Seop;Jeong, Moon-Ki;Lee, Young-Kyun;Lee, Ho-Jun;Kim, Young-Min;Cho, Han-Chul;Joo, Suk-Bae;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.17-21
    • /
    • 2011
  • Copper (Cu) had been attractive material due to its superior properties comparing to other metals such as aluminum or tungsten and considered as the best metal which can replace them as an interconnect metal in integrated circuits. CMP (Chemical Mechanical Polishing) technology enabled the production of excellent local and global planarization of microelectronic materials, which allow high resolution of photolithography process. Cu CMP is a complex removal process performed by chemical reaction and mechanical abrasion, which can make defects of its own such as a scratch, particle and dishing. The abrasive particles remain on the Cu surface, and become contaminations to make device yield and performance deteriorate. To remove the particle, buffing cleaning method used in post-CMP cleaning and buffing is the one of the most effective physical cleaning process. AE(Acoustic Emission) sensor was used to detect dynamic friction during the buffing process. When polishing is started, the sensor starts to be loaded and produces an electrical charge that is directly proportional to the applied force. Cleaning efficiency of Cu surface were measured by FE-SEM and AFM during the buffing process. The experimental result showed that particles removed with buffing process, it is possible to detect the particle removal efficiency through obtained signal by the AE sensor.

Analysis of Quartz Contents by XRD and FTIR in Respirable Dust from Various Manufacturing Industries Part I - Foundry (제조업체에서 발생하는 호흡성분진중 XRD와 FTIR를 이용한 결정형 유리규산 농도의 비교분석 제 1부 - 주물사업장)

  • Kim, Hyunwook;Roh, Young Man;Phee, Young Gyu;Won, Jeoung IL;Kim, Yong Woo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.50-66
    • /
    • 1998
  • This study was conducted to estimate crystalline silica contents in airborne respirable dust from various manufacturing industries and to compare analytical performance of two methods of quantifying crystalline silica, X-ray diffraction(XRD) and Fourie transform infrared spectroscopy (FTIR). For this study, various manufacturing industries with a history of having pneumoconiosis cases and also known to generate dusts containing crystalline silica were investigated. These industries include: foundry, brick, potteries, concrete, and abrasive material, etc. Both personal and area respirable dust samples were collected using 10 mm, Dorr-Oliver nylon cyclone equipped with 37mm, $5{\mu}m$ pore size, polyvinylchloride (PVC) filters as collection media. In addition, total dust samples were collected side-by-side to the respirable samples. All samples were weighed before and after sampling and were pretreated according to the NIOSH sampling and analytical methods 0500, 7500, and 7602 for dust collection and quartz analysis. In addition, bulk samples were collected and analyzed by X-ray fluorescence (XRF) for minerals. In this article, only the results obtained from foundry are reported. The results from various other industries will be published in future articles. The respirable dust concentrations from personal samples by cyclone were $0.46-1.06mg/m^3$ and those from area samples were $0.34-0.73mg/m^3$. Dust concentrations of personal samples were significantly higher than those of area samples. The highest dust concentration was obtained from the personal samples of the finishing operation. Total dust concentration ranged $1.24-3.40mg/m^3$. The mean quartz contents estimated by FTIR and XRD in the personal respirable dust samples were 5.12% and 4.41%, respectively, without significant difference between them. For quartz analyses, the two techniques were highly correlated with $r^2$ ranged 0.803-0.920. But the results by FTIR were mostly higher than those by XRD. In addition, cristobalite was not detected by FTIR. Significant correlations between contents of crystalline silica and such minerals as $Al_2O_3$, CaO, $TiO_2$, and $K_2O$ suggest possible interferences from these minerals.

  • PDF

Study on the growth of 4H-SiC single crystal with high purity SiC fine powder (고순도 SiC 미분말을 적용한 4H-SiC 단결정 성장에 관한 연구)

  • Shin, Dong-Geun;Kim, Byung-Sook;Son, Hae-Rok;Kim, Moo-Seong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.383-388
    • /
    • 2019
  • High purity SiC fine powder with metal impurity contents of less than 1 ppm was synthesized by improved carbothermal reduction process, and the synthesized powder was used for SiC single crystal growth in RF heating PVT device at temperature above 2,100℃. In-situ x-ray image analyzer was used to observe the sublimation of the powder and single crystal growth behavior during the growth process. SiC powder was used as a source of single crystal growth, exhausted from the outside of the graphite crucible at the growth temperature and left graphite residues. During the growth, the flow of raw materials was concentrated in the middle and influenced the growth behavior of SiC single crystals. This is due to the difference in temperature distribution inside the crucible due to the fine powder. After the single crystal growth was completed, the single crystal ingot was cut into a 1 mm thick single crystal substrate and finely polished using a diamond abrasive slurry. A dark yellow 4H-SiC was observed overall of single crystal substrate, and the polycrystals generated in the outer part may be caused by the incorporation of impurities such as the bubble layer mixed in the process of attaching the seed crystal to the seed holder.

The Effect of Si Content on the Tribological Behaviors of Ti-Al-Si-N Coating Layers (Ti-Al-Si-N 코팅막의 마모거동에 미치는 Si 함량의 영향)

  • Jin, Hyeong-Ho;Kim, Jung-Wook;Kim, Kwang-Ho;Yoon, Seog-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.88-93
    • /
    • 2005
  • Ti-AI-Si-N coating layers were deposited on WC-Co substrates by a hybrid system of arc ion plating and sputtering techniques. The coatings were prepared with different Si contents to investigate the effect of Si content on their mechanical properties and microstructures. The dry sliding wear experiments were conducted on Ti-AI-Si-N coated WC-Co discs at constant load, 3N, and sliding speed, 0.1 m/s with two different counterpart materials such as steel ball and zirconia ball using a conventional ball-on-disc sliding wear apparatus. In the case of steel ball, the friction coefficient of Ti-AI-Si-N coating layers became lower than that of Ti-AI­N coating layers. The friction coefficient decreased with increasing of Si content due to adhesive wear behavior between coating layer and steel ball. On the contrary, in the case of zirconia ball, the friction coefficient increased with increasing of Si content, indicating that abrasive wear behavior was more dominant when the coating layers slid against zirconia ball.

Fabrication and Characteristics of $Al_2O_{3p}$/AC8A Composites by Pressureless Infiltration Process (무가압함침법에 의한 $Al_2O_{3p}$/AC8A 복합재료의 제조 및 특성)

  • 김재동;고성위;정해용
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2000
  • The fabrication Process of $Al_2O_{3p}$/AC8A composites by pressureless infiltration technique and the effects of additive Mg content and volume fraction of particulate reinforcement on mechanical and wear properties were investigated. It was found that the bending strength decreased with increasing volume fraction of $Al_2O_{3p}$ particles. Whereas hardness increased with volume fraction of $Al_2O_{3p}$ particles. The decrement of strength in case of high volume fraction of $Al_2O_{3p}$ particles was attributed to high porosity level. In terms of additive Mg content, $Al_2O_{3p}$/AC8A composites containing around 5~7wt% of additive Mg indicated the highest strength, and hardness values increased with additive Mg contents. Wear resistance of AC8A alloy were improved by reinforcement of $Al_2O_{3p}$ particles especially at high sliding velocity. Wear property of $Al_2O_{3p}$/AC8A composites and AC8A alloy exhibited different aspects. $Al_2O_{3p}$/AC8A composites indicated more wear loss than AC8A alloy at slow velocity region. However a transition point of wear loss was found at middle velocity region which shows the minimum wear loss and wear loss at high velocity region exhibited almost same value as at slow velocity region, whereas wear loss of AC8A alloy almost linearly increased with sliding velocity. It was found that $Al_2O_{3p}$/AC8A composites containing $Al_2O_{3p}$ volume fraction of 20% exhibited abrasive wear surface regardless of sliding velocity and $Al_2O_{3p}$/AC8A composites containing $Al_2O_{3p}$ volume fraction of 40% showed slightly adhesive wear surface at low sliding velocity, and it progressed to severe wear as increasing the sliding velocity.

  • PDF

A Study on the Measurements of Sub-surface Residual Stress in the Field of Linear Stress Gradient (선형구배 응력장에서 표층의 잔류응력 측정에 관한 연구)

  • 최병길;전상윤;이택순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1632-1642
    • /
    • 1992
  • When a blind hole of small diameter is drilled in the field of residual stress, strain relieved around the hole is function of magnitude of stress, patterns of stress distribution and hole geometry of diameter and depth. Relieved strain coefficients can be calculated from FEM analysis of relieved strain and actual stress. These relieved strain coefficients make it possible to measure residual stress which vary along the depth in the subsurface of stressed material. In this study, the calibration tests of residual stress measurement are carried out by drilling a hole incrementally on the cantilever or on the tensile test bar. Residual stresses can be determined from measured strains around a shallow hole by application of power series method. For the sake of reliable measurement of residual stress, much efforts should be done to measure relieved strains and hole depth more accurately comparing with conventional procedures of gage subject to the external load. Otherwise linear equations converting strains into stresses may yield erratic residual stresses because of ill-conditions of linear equations. With accurate measurements of relieved strains, residual stress even if varying along the depth can be measured. It is also possible to measure residual stress in the thin film of material by drilling a shallow hole.

THE EFFECTS OF SURFACE CONTAMINATION ON THE SHEAR BOND STRENGTH OF COMPOMER

  • Heo, Jeong-Moo;Lee, Su-Jong;Im, Mi-Kyung
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.577-577
    • /
    • 2001
  • The lastest concepts in bonding are "total etch", in which both enamel and dentin are etched with an acid to remove the smear layers, and "wet dentin" in which the dentin is not blown dry but left moist before application of the bonding primer. Ideally, the application of a bonding agent to tooth structure should be insensitive to minor contamination from oral fluids. Clinically contaminations such as saliva, gingival fluid, blood and handpiece lubricant are often encountered by dentists during preparation of a restoration. The aim of this study was to evaluate the effect of contamination by hem-ostatic agents on shear bond strength of compomer restorations. One hundred and ten extracted human maxillary and mandibular molar teeth were collected. The teeth were cleaned from soft tissue remnant and debris and stored in physiologic solution until they were used. Small flat area on dentin of the buccal surface were wet ground serially with 400, 800 and 1200 abrasive paper on automatic polishing machine. The teeth were randomly divided into 11 groups. Each group was conditioned as follows: Group 1 : Dentin surface was not etched and not contaminated by hemostatic agents. Group2 : Dentin surface was not etched but was contaminated by Astringedent (Ultradent product Inc., Utah, U.S.A.). Group3 : Dentin surface was not etched but was contaminated by Bosmin (Jeil Phann, Korea.). Group4 : Dentin surface was not etched but was contaminated by Epri-dent (Epr Industries, NJ, U.S.A.). Group5: Dentin surface was etched and not contaminated by hemostatic agents. Group 6 : Dentin surface was etched and contaminated by Astringedent. Group7 : Dentin surface was etched and contaminated by Bosmin. Group8 : Dentin surface was etched and contaminated by Epri-dent. Group9 : Dentin surface was contaminated by Astringedent. The contaminated surface was rinsed by water and dried by compressed air. Group10 : Dentin surface was contaminated by Bosmin. The contaminated surface was rinsed by water aud dried by compresfed air. Group 11 : Dentin surface was contaminated by Epri-dent. The contaminated surface was rinsed by water and dried by compresfed air. After surface conditioning, F2000 was applicated on the conditoned dentin surface. The teeth were thermocycled in distilled water at $5^{\circ}C\;and\;55^{\circ}C$ for 1000 cycles. The samples were placed on the binder with the bonded compomer-dentin interface parallel to the lmife-edge shearing rod of the Universal testing machine(Zwick 020, Germany) running at a cross head speed of 1.0mmimin. There were no significant differences in shear bond strength between groups 1 and group 3 and 4, but group 2 showed significant decrease in shear bond strength compared with group 1. There were no significant differences in shear bond strength between group 5 and group 7 and 8, but group 6 showed significant decrease in shear bond strength compared with group 5. There were no significant differences in shear bond strength between group 5 and group 9, 10 and 11.

  • PDF

Wear Properties of Hybrid Metal Matrix Composites (하이브리드 금속복합재료의 마모특성)

  • 부후이후이;송정일
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.75-84
    • /
    • 2003
  • The purpose of this study is to investigate the wear properties of Saffil/Al, Saffil/A12O3/Al and Saffil/SiC/Al hybrid metal matrix composites fabricated by squeeze casting method. Wear tests were done on a pin-on-disk friction and wear tester under both dry and lubricated conditions. The wear properties of the three composites were evaluated in many respects. The effects of Saffil fibers, $\textrm{Al}_2\textrm{O}_3$ particles and SiC particles on the wear behavior of the composites were investigated. Wear mechanisms were analyzed by observing the worn surfaces of the composites. The variation of coefficient of friction(COF) during the wear process was recorded by using a computer. Under dry sliding condition, Saffil/SiC/Al showed the best wear resistance under high temperature and high load, while the wear resistances of Saffil/Al and Saffi1/$\textrm{Al}_2\textrm{O}_3$/Al were very similar. Under dry sliding condition, the dominant wear mechanism was abrasive wear under mild load and room temperature, and the dominant wear mechanism changed to adhesive wear as load or temperature increased. Molten wear occurred at high temperature. Compared with the dry sliding condition, all three composites showed excellent wear resistance when lubricated by liquid paraffin. Under lubricated condition, Saffil/Al showed the best wear resistance among them, and its COF value was the smallest. The dominant wear mechanism of the composites under lubricated condition was microploughing, but microcracking also occurred to them to different extents.