• Title/Summary/Keyword: abrasion resistance

Search Result 468, Processing Time 0.031 seconds

Physical, Mechanical and Durability Properties of the Quartzite Units of Central Nepal Lesser Himalaya

  • Dinesh Raj Sharma;Naresh Kazi Tamrakar;Upendra Baral
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.67-105
    • /
    • 2024
  • This study compares the quartzites of four quartzite units: The Fagfog Quartzite, Dunga Quartzite (member of the Robang Formation), Pandrang Quartzite (member of the Kalitar Formation) and the Chisapani Quartzite. The analysis shows variations in flakiness and elongation, as the Fagfog Quartzite displays low flakiness whereas the Pandrang and the Chisapani have moderate and the Dunga Quartzite has shown variations. The density values of the four quartzite units remain consistent, indicating uniform physical properties and porosity levels. However, bulk density values differ among the quartzites, suggesting variations in particle arrangement, porosity, and density. Regarding strength measures, the Pandrang and the Chisapani Quartzite have higher strength characteristics as compared to the Fagfog and the Dunga Quartzites. The Pandrang Quartzite has the highest average point load strength index, classifying it as "Extremely Strong". The resistance to impact and crushing forces varies among the quartzites, with lower Aggregate Impact Value (AIV) and Aggregate Crushing Value (ACV) indicating higher strength and durability. Durability tests show that the Fagfog Quartzite has high durability against slaking, with a slight decrease observed after the fifth cycle. The Dunga Quartzite shows varying degrees of weathering, while the Pandrang and the Chisapani Quartzite have minimal weight changes, indicating strong resistance to weathering. Magnesium sulfate soundness tests indicate high durability and resistance to degradation for all four units. The Los Angeles abrasion value (LAAV) tests indicate favorable resistance to abrasion for the majority of the Fagfog, Dunga, and the Pandrang Quartzites samples, while Chisapani Quartzite shows more variability in LAAV values. The Pandrang Quartzite shows a higher proportion of elongated particles but lower flakiness index values as compared to Fagfog and Dunga Quartzites while Chisapani Quartzite stands out with a significantly higher presence of flaky particles and lower elongation index values. Mechanically, the Fagfog and Dunga Quartzite show higher strength and better resistance to abrasion and freeze and thaw. The Pandrang Quartzite shows moderate resistance to crushing and sudden effect, while the Chisapani Quartzite has variable resistance to effect. This comparative study emphasizes the diversity and complexity of quartzite rock types, showing the need for comprehensive characterization and assessment to determine their suitability for specific applications.

Low streee Abrasive Wer mechanism of the Iron/Chromium Hardfacing Alloy (저응력하의 철/크롬 올버레이합금의 긁힘마모기구)

  • 백응률
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.73-83
    • /
    • 1998
  • This study investigated the relationships between the microstructure and the wear resistance of hardfaced iron/chromium alloys to examine the low stress abrasive wear mechanism. The effects of volume fraction of reinforcing phases(chromium carbide and eutectic phase) were studied. The alloys were deposited once or twice on a mild steel plate using a self-shielding flux cored arc welding process. The low stress abrasion resistance of he alloys against dry sands was measured by the Dry Sand/Ruber Wheel Abrasion Tester (RWAT). The wear resistance of hypoeutectic alloys, below 0.36 volume fraction of chromium-carbide phase (VFC), behaved as Equal Pressure Mode (EPM) for the inverse rule of mixture whereas the wear resistance of hypereutectic alloys, above 0.36 VFC, represented Equal Wear Mode (EWM) for the linear rule of mixture.

  • PDF

Enhanced Properties of Aluminum Oxide Layers with Post Heat Treatment (후열처리에 의한 알루미늄 산화층의 특성 향상)

  • Jeon, Yoonnam;Kim, Sangjun;Park, Jihyun;Jeong, Nagyeom
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.5
    • /
    • pp.275-281
    • /
    • 2019
  • Anodization is widely used to enhance the properties of aluminum, such as hardness, electric resistance, abrasion resistance, corrosion resistance etc. But these properties can be enhanced with additional process. According to the partial crystallization of oxide layer with post heat treatment, enhanced hardness can be expected with partial crystallization. In this study, post heat treatments were applied to the anodized aluminum alloys of Al6061 to achieve the partial crystallization, and crystallizations were evaluated with the reduced breakdown voltages. Interestingly, remarkable enhanced hardness (21~29%), abrasion resistance (26~62%), and reduced breakdown voltage (24~44%) were observed for the sulfuric acid anodized samples when we annealed the anodized samples with 1hour post heat treatment at $360^{\circ}C$. For the Al5052 alloys, a lot of cracks were observed when we applied the post heat treatment.

Surface Preparation and Activation Only by Abrasion and Its Effect on Adhesion Strength

  • Ali Gursel;Salih Yildiz
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.101-107
    • /
    • 2022
  • Adhesive joints have many advantages such as weight savings, corrosion and fatigue resistance and now developed even withstand of high impact and dynamic loads. However, an adhesion has cumbersome and complicated surface preparation processes. The surface preparation step is critical in adhesive joint manufacturing in order to obtain the prescribed strength for adhesive joints. In this study, it was attempted to simplify and reduce the number of surface preparation steps, and abrasion and rapid adhesive application (ARAA) process is developed for an alternative solution. The abrasion processes are performed only for creating surface roughness in standard procedures (SP), although the abrasion processes cause surface activation itself. The results showed that there is no need the long procedures in laboratory or chemical agents for adhesion. After the abrasion process, the attracted and highly reactive fresh surface layer obtained, and its effect on bonding success is observed and analyzed in this research, in light of the essential physic and adhesion theories. Al 6061 aluminum adherends and epoxy-based adhesives were chosen for bonding processes, which is mostly used in light vehicle parts. The adherends were cleaned, treated and activated only with abrasion, and after the adhesive application the specimens were tested under quasi-static loading. The satisfied ARAA results were compared with that of the specimens fabricated by the standard procedure (SP) of adhesion processes of high impact loads.

A Study on the Durable Press Finish by Wet-Fixation Processes for Rayon Fabrics (I) - One Bath and Two Bath Processes - (레이온 직물의 Wet-Fixation에 의한 DP가공에 관한 연구(I) - 일욕법과 이욕법의 비교 -)

  • Hu Yoon Sook;Kim Eun Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.3 s.31
    • /
    • pp.242-251
    • /
    • 1989
  • The purpose of this study was to investigate the changes in easy-care and strength properties of the wet fixation processed viscose rayon fabrics. Rayon fabrics were treated with mixed resins of melamine formaldehyde (MF) and DMDHEU by one bath and two bath wet fixation processes. The MF/DMDHEU mixed resin concentrations were 50/100, 50/150, 100/100, 100/150 and 150/100(g/1). Magnasium chloride was used as a catalyst. Treated fabrics were evaluated by nitrogen content, DP rating, wrinkle recovery angle, breaking strength, tearing strength and abrasion resistance. The properties were compared to the fabrics treated by conventional Pad-Dry-Cure (PDC) method. Wet fixation processed fabrics showed DP ratings of higher than 3 and higher than 275 degrees of wrinkle recovery angles in all the mixed resin concentrations. Wet fixation processed fabrics showed increase in breaking strength and tearing strength but decrease in abrasion resistance. However, the decrease in abrasion resistance was much less than the conventional PDC treated fabrics. The one bath wet fixation processed fabrics showed better physical properties than the two bath processed fabrics in general. The optimum treatment condition was the mixed resin concentration of MF/DMDHEU, 100/100 g/l in one bath wet fixation process.

  • PDF

Effect of Primarily Solidified Structure on the Microstructure and the Mechanical Properties of High Cr White Iron (고크롬 백주철의 미세조직과 기계적 특성에 미치는 초기응고 조직의 영향)

  • Jo, Hyun-Wook;Do, Jeong-Hyeon;Jo, Won-Je;Chung, Hyun-Deuk;Lee, Je-Hyun;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.178-184
    • /
    • 2015
  • Due to excellent abrasion resistance the high-chrome white irons are widely used in mining and mineral industries. Minor variation of carbon content in 28% chrome white iron resulted in difference in primarily solidified microstructure. Sub-eutectic (hypoeutectic) composition led to formation of primarily solidified dendrites. Formation of primarily solidified dendrites which were supersaturated with carbon and chrome also caused precipitation of fine secondary carbides that are different from relatively large plate type $M_7C_3$ carbides in the eutectic structure. Small portion of primarily solidified dendrite expected to contribute significantly to the improvement of abrasion resistance of the white iron because the dendrites provided mechanical support to carbides. The relative fraction of primary dendrite increased with reduction of carbon content from the eutectic composition. The increased fraction of primary dendrite increased hardness value of the white irons.

A Study on Modification of NBR Rubber Roll (I) -NBR/PVC Blend Systems- (NBR계(系) 고무롤의 생성개질(物性改質)에 관(關)한 연구(硏究) (I) -NBR/PVC 혼합계(混合系) 고무-)

  • Seo, Kwan-Ho;Ko, Young-Cheol;Ha, Hyun-Dal;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.30 no.3
    • /
    • pp.195-206
    • /
    • 1995
  • To modify the NBR rubber roll which has poor abrasion and chemical resistance, NBR/PVC blends were prepared in various composition ratios. First of all, their miscibility and vulcanization characteristics were investigated. Their abrasion and chemical resistant properties and physical properties were also studied. DSC thermograms for NBR/PVC blends show only one Tg in the entire composition range, demonstrating a perfect miscibility. In the vulcanization characteristics tested by rheometer, maximum torque decreases as PVC contents increased. In the investigation of physical properties of NBR/PVC blends, hardness increases and elongation decreases along with the increasing contents of PVC. On the other hands, tensile strength increases with the increasing contents of PVC up to 11.1 wt. %, and then decreases with higher contents of PVC. While the abrasion resistance of NBR/PVC blends was similar to that of NBR itself, the chemical resistance of NBR/PVC blends was superior to that of NBR.

  • PDF

Experimental Study on Slip Characteristics of Floor Surface Roughness and Slider Materials (바닥 거칠기 및 미끄럼판 재질에 따른 미끄러짐 특성 연구)

  • Kim, Jung-Soo;Park, Jea-Suk
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.65-69
    • /
    • 2010
  • This paper presented an experimental study of slip resistance characteristics of shoes and floor surface contact with special focus on the effect of surface roughness, outsole material and mechanical abrasion. The factors that affected the results of slip resistances were investigated for four kinds of rubbers and five kinds of floor samples using the VIT(English XL) tribometer. The slip resistance was observed to increase gradually with increasing roughness for five kinds of floor roughness. In the higher surface roughness (larger than $11.5{\mu}m$), the slip resistance increased more rapidly and exceeded safety criteria at $22.60{\mu}m$. The slip resistance was observed to decrease with increasing hardness of outsole, except for butylenes rubber, which seemed to show the material property. The slip resistance decreased with number of trials. In the first several times(5 or 6 trial), the slip resistance decreased more rapidly, whereafter it approached gradually constant value. The slip resistance of surfaces has generally been shown to increase with floor surface roughness and to decrease with hardness of outsole and number of trials under the wet condition.

Cavitation resistance of concrete containing different material properties

  • Kumar, G.B. Ramesh;Bhardwaj, Arjit;Sharma, Umesh Kumar
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.15-28
    • /
    • 2018
  • In the present investigation, influence of various material parameters on the cavitation erosion resistance of concrete was investigated on the basis of laboratory experiments. As there is no well-established laboratory test method for evaluating the cavitation resistance of concrete, a test set up called 'cavitation jet' was specially established in the present study in order to simulate the cavitation phenomenon experienced in the hydraulic structures. Various mixtures of concrete were designed by varying the grade of concrete, type and quantity of pozzolana, type of aggregates and cement type to develop good cavitation resistant concrete constructed using marginal aggregates. Three types of aggregates having three different Los Angeles abrasion values (less than 30%, between 30% and 50% and more than 50%) were employed in this study. To evaluate the cavitation resistance a total of 60 cylindrical specimens and 60 companion cubes were tested in the laboratory respectively. The results indicate that cavitation resistance of concrete degrades significantly as the L.A. abrasion value of aggregates goes beyond the 30% value. Incorporation of pozzolanic admixtures was seemed to be beneficial to enhance the cavitation resistance of concrete. Influence of other material parameters on the cavitation resistance of concrete was also noted and important observations have been made in the paper.

Effect of Molecular Weight of Epoxidized Liquid Isoprene Rubber as a Processing aid on the Vulcanizate Structure of Silica Filled NR Compounds

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Hwang, Kiwon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.223-233
    • /
    • 2021
  • In this study, epoxidized liquid isoprene rubber (E-LqIR) was used as a processing aid in a silica-filled natural rubber compound to improve the fuel efficiency, abrasion resistance, and oil migration problems of truck and bus radial tire tread. The wear resistance, fuel efficiency, and extraction resistance of the compound were evaluated according to the molecular weight of E-LqIR. Results of the evaluation showed that the E-LqIR compound had a lower chemical crosslink density than that of a treated distillate aromatic extract (TDAE) oil compound because of the sulfur consumption of E-LqIR. However, the filler-rubber interaction improved because of the reaction of E-LqIR with silica and crosslink with the base rubber by sulfur. As the molecular weight of E-LqIR increased, crosslink with sulfur was facilitated, and the filler-rubber interaction improved, resulting in improved abrasion resistance. The fuel efficiency performance of the E-LqIR compound was poorer than that of the TDAE oil compound because of the low chemical crosslink density and hysteresis loss at the free chain end of E-LqIR. However, the fuel efficiency performance improved as the molecular weight of E-LqIR increased.