• Title/Summary/Keyword: abnormal machining process

Search Result 25, Processing Time 0.024 seconds

Monitoring of Machining State in Turning by Means of Information and Feed Motor Current (NC 정보와 이송축 모터 전류를 이용한 선삭 가공 상태 감시)

  • 안중환;김화영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.156-161
    • /
    • 1992
  • In this research a monitoring system for turning using NC information and the current of feed motor as a monitoring signal was developed. The overall system consists of modules such as learning process, NC data transmission, generation of forecast information, signal acquisition, monitoring and post process. In the learning process, the reference data and the cutting force equation necessary for monitoring are obtained from the accumulated monitoring results. In the generation of forecast information, the information of forecasted cutting forces is acquired from the cutting force equation and NC program and appended to each NC block as a monitor code. Reliability of monitoring is improved by using the monitor code in the real-time monitoring. Monitoring module is divided into two parts : the off-line monitoring where errors of NC program are checked and the on-line monitoring where the level of motor current is monitored during cutting operations. If the actual current level exceeds the limit value provided by the monitor code in the level monitoring, it is recognized as abnormal. In the event of abnormal status, the post processor sends the emergency stop signal to NC controller to stop the operation. Actual experiments have shown that the developed monitoring system works well.

Development of a Fault-tolerant Intelligent Monitoring and Control System in Machining (절삭공정에서 Fault-tolerance 기능을 갖는 지능형 감시 및 제어시스템의 개발)

  • Choi, Gi-Heung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.470-476
    • /
    • 1997
  • The dynamic characteristics of industrial processes frequently cause an abnormal situation which is undesirable in terms of the productivity and the safety of workers. The goal of fault-tolerance is to continue performing certain activities even after the failure of some system cononents. A fault-tolerant intelligent monitoring and control system which is robust under disturbances is proposed in this paper. Specifically, the fault-tolerant monitoring scheme proposed consists of two process models and the inference module to preserve such a robustness. The results of turning experiments demonstrate the effectiveness of the fault-tolerant scheme in the presence of built-up edge.

Application of Mahalanobis Taguchi System for Analysis of Multivariate System (Mahalanobis Taguchi System을 이용한 다변량 시스템의 해석에 관한 연구)

  • Hong, Jeong-Eui;Kim, Yong-Beom
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2005.11a
    • /
    • pp.300-310
    • /
    • 2005
  • Mahalanobis Taguchi System (MTS) is developed by Genishi Taguchi as a part of his quality engineering methodology. The basic idea of Taguchi's quality engineering is looking for the way of effectiveness of analyzing multivariate system. In the MTS, with the standardized variables of healthy normal data, Mahalanobis Distance(MD) calculated and that can be discriminate between normal and abnormal objects. If this discrimination process is successful, next step is optimization which is try to reduce number of attributes by neglecting less effective attributes to MD. Orthogonal Array (OA) and Signal to Noise ratio (S/N) are used to evaluate the amount contribution of each attribute to the MD. Wisconsin Breast Cancer study, from machining learning repository at University of California at Irvine, used for examining the discriminant ability of MTS.

  • PDF

Metal Forming Simulation with Emphasis on Metal Flow Lines and its Applications (소성유동선도를 강조한 소성가공 시뮬레이션과 그 적용 사례)

  • Eom, J.G.;Jeong, S.W.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.6
    • /
    • pp.323-327
    • /
    • 2013
  • In this paper, the flow lines as a function of product design as well as the forging process design are explored using typical application examples. The prediction of flow lines using metal forming simulation technology is introduced along with their characterization. Experimental studies have shown that the metal flow lines have a strong influence on the structural rigidity of the final product. In this study we present several typical applications. One example is the case of severely cut metal flow lines during machining, especially in the region where periodic contacting forces are applied. Another example is the case of abnormal distortion of flow lines which can cause too much elongation or hot shortness due to viscous heating in the region of distortion. A third example is the case of a macrosegregation region which needs to be controlled so it is not adjacent to the region where the force is applied in the use of the final component. An example of weight reduction for an automobile component with improved flow lines is also introduced. These typical applications can provide process engineers with the insight in designing automobile or mechanical components as well as in designing the manufacturing methods to produce various parts.

Automated Inspection System for Micro-pattern Defection Using Artificial Intelligence (인공지능(AI)을 활용한 미세패턴 불량도 자동화 검사 시스템)

  • Lee, Kwan-Soo;Kim, Jae-U;Cho, Su-Chan;Shin, Bo-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.729-735
    • /
    • 2021
  • Recently Artificial Intelligence(AI) has been developed and used in various fields. Especially AI recognition technology can perceive and distinguish images so it should plays a significant role in quality inspection process. For stability of autonomous driving technology, semiconductors inside automobiles must be protected from external electromagnetic wave(EM wave). As a shield film, a thin polymeric material with hole shaped micro-patterns created by a laser processing could be used for the protection. The shielding efficiency of the film can be increased by the hole structure with appropriate pitch and size. However, since the sensitivity of micro-machining for some parameters, the shape of every single hole can not be same, even it is possible to make defective patterns during process. And it is absolutely time consuming way to inspect all patterns by just using optical microscope. In this paper, we introduce a AI inspection system which is based on web site AI tool. And we evaluate the usefulness of AI model by calculate Area Under ROC curve(Receiver Operating Characteristics). The AI system can classify the micro-patterns into normal or abnormal ones displaying the text of the result on real-time images and save them as image files respectively. Furthermore, pressing the running button, the Hardware of robot arm with two Arduino motors move the film on the optical microscopy stage in order for raster scanning. So this AI system can inspect the entire micro-patterns of a film automatically. If our system could collect much more identified data, it is believed that this system should be a more precise and accurate process for the efficiency of the AI inspection. Also this one could be applied to image-based inspection process of other products.