• Title/Summary/Keyword: abalone Haliotis discus hannai

Search Result 198, Processing Time 0.041 seconds

Genetic control of shell color variation in the Haliotis discus hannai by mating experiments (교배실험을 통한 북방전복 (Haliotis discus hannai)의 패각색 변이에 대한 유전적 지배)

  • Park, Choul Ji;Nam, Won Shik;Lee, Myeong Seok;Kang, Ji-Yun;Kim, Kyung Kil
    • The Korean Journal of Malacology
    • /
    • v.30 no.4
    • /
    • pp.409-413
    • /
    • 2014
  • Purple-colored shell individuals were discovered among normal green-colored shell individuals in artificial seed of Pacific abalone, Haliotis discus hannai, reared on an ordinary type of diatom and artificial diet. In the present study, factorial mating experiments were designed to clarify the genetic control of the variant (purple type) and normal (green type) of shell color. The parental population of purple type and green type individuals were derived from a single family between a female and male of each type of coloration. The all mating families were reared in same tank for the same breed environment. The individual of 4 type families were distinguished by paternity test using microsatellite DNA. In factorial mating experiments, all individuals offspring of GG (green type female and green type male), GP (green type female and purple type male) and PG (purple type female and green type male) mating types appeared to green type. In only PP (purple type female and purple type male) mating type, all individuals offspring appeared to purple type. The results suggested that the purple shell color is controlled by recessive purple type allele and a dominant green type allele at a single locus.

Study on Exfoliation and Recovery of Anesthetized Yound Abalones, Haliotis discus hannai Treated with Ethy-p-aminobenzoate and Freshwater in Different Temperatures of Sea water (온도구간별 파라아미노안식향산에틸과 담수에 의한 양식산 참전복 (Haliotis discus hannai) 치패의 박리 및 마취회복에 관한 연구)

  • 최상덕;정성채;김호진;공용근;백재민;최규정
    • Journal of Aquaculture
    • /
    • v.10 no.3
    • /
    • pp.281-288
    • /
    • 1997
  • We investigated the optimal concentratin of ethyl-p-aminobenzoate for the exfoliation and recovery of young abalone, Haliotis discus hannai in according to different water temperatures, for the purpose of preventing the damage of shell and muscle to ecfoliated from shelter. In the 14$^{\circ}C$ water temperature, young abalones were exfoliated after 16, 35, 35 and 35 minutes in 150, 100, 75 and 50ppm concentration of ethyl-p-aminobenzoate, and were recovered after 100, 60, 30 and 30 minutes, respectively. Exfoliation rate of abalone were 100% except for 50 ppm (80%) and recovery rate were 100% of all concentration. In the $18^{\circ}C$ water temperature, young abalones were exfoliated after 4, 4, 6, 8, 8 and 12 munutes in 300, 200, 150, 100, 75 and 50ppm concentration of ethyl-p-aminobenzoate, and were recovered after 210, 180, 90, 60, 30, 20 and 20 minutes, respectively. Exfoliation rate of abalone were 100%, and recovery rate were 100% except for 200 and 300ppm (90%). In the $24^{\circ}C$ water temperature, young abalones were exfoliated after 8, 10, 10 and 12 minutes in 150, 100, 75 and 50ppm concentration of ethyl-p-aminobenzoate, and were recovered after 70, 50, 30 and 20 minutes, respectively. Exfoliation and recovery rate of abalone were 100%. In the 18$^{\circ}C$water temperature, exfoliation rate that treated with freshwater during 20 minute were 80, 50, 30 and 5% in 100, 75, 50 and 25% of fresh water, and recovery after 60, 15, 10 and 2 minutes, respectively and recovery arate were 100% except of r 100% freshwater. In this study, we suggest the reslults that the exfoliation and recovery by ethly-p-aminobenzoate were more effected in $18^{\circ}C\;and\;24^{\circ}C$ of sea water temperature than those of $14^{\circ}C$. The optimal concentration of ethyl-p-aminobenzoate was 50ppm at those water temperature. We raised 20 individual of young abalones at water temperature of $16^{\circ}C$ in the 1$\ell$ o ftnk and checked the variatin of dissolved oxygen (DO) by respiration of abalones that treated with 75ppm of ethyl-p-aminobenzoate. Before anesthetizion, DO were 6.17~6.20mg/$\ell$ and slowly decreased. But after 60 minutes, DO decreasing were stopped in 5.42~5.46mg/$\ell$. On the other hand, the control was continuously decreased and 5.27mg/$\ell$ after 60 minutes. The heartbeats of abalones were 33~45/minute in the water temperature of $18^{\circ}C$, but that treated with 100 ppm concentration of ethyl-p-aminobenzoate during 60 minutes, was 0/minute. And heartbeats of recovered abalones from anesthetizion were 29~43/minute.

  • PDF

Toxic Effects of Phenol on Survival and Oxygen Consumption of the Abalone Juvenile, Haliotis discus hannai (참전복, Haliotis discus hannai 치패의 생존과 산소소비에 미치는 phenol의 독성 영향)

  • KIM Heung-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.496-504
    • /
    • 1997
  • This study was carried out to estimate toxic effects of phenol on survival and metabolism of the abalone juvenile, Haliotis discus hannai. The experiment was conducted by renewal bioassay procedure with different salinities at $20^{\circ}C$. The $LC_{50}$ of the juvenile exposed to phenol in the range of 0.5 and $100mg/\ell\;was\;34.3\~6.5mg/\ell\;at\;2.4\%_{\circ}\;and\;52.2\~9.3m/\ell\;at\;32\%_{\circ}$ salinity with exposure time from 24 hours to 96 hours. $LT_{50}$ was remarkablely reduced with increase of phenol conentration and decrease of salinity. Lethal toxicity or phenol was higher at low salinity than at high salinity. Therefore, salinity is likely to be one of factor to increase phenol toxicity. The oxygen consumption of the juvenile was reduced with increase of phenol concentration and with decrease of salinity. In spite of phenol toxicity, the oxygen consumption of the juvenile exposed to phenol of low concentration was high and similar as compared with that of control group. Survival rates of the abalone kept in phenol-free sea water after exposure to phenol concentration of 5, 10 and $20mg/\ell$ for 96 hours were reduced with decrease of salinity. Durations required to recover the normal metabolic rate of the juvenile, which was exposed to phenol concentration of 5, 10 and $20mg/\ell$ for 96 hours, were made longer with increasing phenol concentration. In the case of the juvenile exposed to sublethal concentration of phenol for 15 days, it were elongated as compared with that of the abalone exposed to phenol concentration caused acute toxicity. The result of this experiment indicated that relatively low concentration of phenol can impact on the abalone juvenile in marine ecosystem.

  • PDF

The Effects of Fed Artificial Diet and Seaweed Diet on Growth and Body Composition of Juvenile Abalone, Haliotis discus hannai by Land-based Tank Immediate Culture Types (육상수조 중간양성 방식별 생사료 및 배합사료 공급이 북방전복, Haliotis discus hannai 치패의 성장과 체성분에 미치는 영향)

  • Kim, Byeong-Hak;Park, Min-Woo;Kim, Tae-Ik;Son, Maeng-Hyun;Lee, Si-Woo
    • The Korean Journal of Malacology
    • /
    • v.31 no.2
    • /
    • pp.73-81
    • /
    • 2015
  • This study was conduct to investigate the effect of intermediate culture types on the growth and survival rate of the juvenile abalone, Haliotis discus hannai fed seaweed and artificial diet. Intermediate cultures were to determine there that was to fed seaweed (SW) of artificial diet (A) of floor culture (FC), net floor culture (NFC), double shelter culture (DSC) and indoor net cage culture (INCC) in land-based tank, in two replicate. In the growth performance of juvenile abalone reared through intermediate culture to fed SW of A, that the absolute growth rate ($AGR_{SL}$, $AGR_{SB}$), daily growth rate ($DGR_{SL}$, $DGR_{SB}$), and specific growth rate ($SGR_{SL}$, $SGR_{SB}$) to the shell length (SL) and shell breadth (SB) of experimental groups were not significant. As weight gain (WG), daily weight gain (DWG) and specific weight gain (SWG) to body weight through intermediate culture types in land-based tank was not significant. However, as to survival rate to experimental groups, A-FC was higher than those of different groups (P < 0.05). Therefore, these results is showed that was not difference to growth of juvenile abalone over 2 cm fed seaweed diet and artificial diet according to intermediate culture types. But floor culture with artificial diet indicate that was highest to survival rate, therefore, it is beneficial for higher productivity in floor culture with artificial diet among intermediate culture types.

Effects of the Various Dietary Additives on Growth and Tolerance of Abalone Haliotis discus hannai against Stresses (다양한 사료첨가제 공급에 따른 전복의 성장과 스트레스에 대한 내성 효과)

  • Cho, Sung-Hwoan;Kim, Chung-Il;Cho, Young-Jin;Lee, Bom-Sok;Park, Jung-Eun;Yoo, Jin-Hyung;Lee, Sang-Min
    • Journal of Aquaculture
    • /
    • v.21 no.4
    • /
    • pp.309-316
    • /
    • 2008
  • Effects of the various dietary additives on growth and tolerance of abalone Haliotis discus hannai to the stresses were determined in the 16-week feeding trial. Seventy juvenile (an initial body weight of 4.2 g) abalone per container were randomly distributed into 21, 50 L plastic rectangular containers each. The six kinds of experimental diets were prepared: control (CON) with no additive, by-product of green tea (BPG), extract of figs (EF), extract of green tea (EG), commercially available product of Hearok (PH), and Haematococcus (HC). In addition, dry sea tangle (ST) was prepared to compare the efficiency of the experimental diets. Fishmeal, soybean meal and shrimp head meal were used as the protein source, and dextrin, sea tangle powder and wheat flour, and soybean oil and fish oil were used as the carbohydrate and lipid sources, respectively in the experimental diets. The experimental diets were fed to abalone once a day at a satiation level with a little leftover. The feeding trial lasted for 16 weeks. At the end of the 16-week feeding trial, abalone was exposed to the different types of stresses (air exposure, and sudden changes of rearing temperature and salinity). Survival of abalone fed the sea tangle was highest. However, weight gain of abalone fed the EF, EG and PH diets was significantly (P<0.05) higher than that of abalone fed the BPG diet or dry sea tangle. Shell length of abalone fed the all experimental diets was significantly (P<0.05) higher than that of abalone fed the dry sea tangle. Accumulated mortality of abalone fed the sea tangle was low when exposed to the different types of stresses. Also, relatively low mortality was achieved in abalone fed the HC and EF diets. In considering these results, it can be concluded that the various sources of additives is effective to improve production of abalone, and Haematococcus and extract of figs can be considered as dietary additives to improve resistance of abalone against the different types of stresses.

Exfoliation of abalone, Haliotis discus hannai using organic acid (유기산을 이용한 전복박리)

  • Kim, Wi-Sik;Lee, Si-Woo;Kim, Jung;Choi, Dong-Ik;Oh, Myung-Joo;Hwang, Doo-Jin
    • Journal of fish pathology
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • It is reported that abalone, Haliotis discus hannai, was detached from shelters by commercial oxytetracycline (OTC) dissolved in hydrochloric acid (HCl). In the present study, we investigated the exfoliation effect of fouling abalone by organic acids instead of OTC or HCl. Organic acids (malic acid, citric acid, lactic acid and formic acid) of pH 2.6 and pH 2.1-2.3 exfoliated over 67.6% and 91.7% of abalone, respectively; while OTC of pH 2.6 and pH 2.1-2.3 exfoliated 25.9% and over 74.1% of abalone, respectively. These results indicate that the exfoliation effect of organic acid is better than that of OTC dissolved in HCl at the same pH. However, a lower pH and longer treatment of organic acids resulted in delayed recovery of the detached abalone; abalone immersed in pH 2.3 for 10 second was recovered within 5 min, but took 12 min to recover after 30 second immersion. Moreover, recovery period for abalone exposed to pH 2.1 for 30 second was at least 15 min 45 second. In conclusion, though acids need to be cautiously handled, organic acids may be a better candidate to detach abalone instead of OTC or HCl.

The Abanones, Haliotis discus hannai, Exhibit Potential Anticoagulant Activity in Normal Sprague Dawley Rats (정상 Sprague Dawley 쥐에 대한 전복의 항응고능에 관한 효과)

  • Kim, Hag-Lyeol;Kim, Seon-Jae;Kim, Du-Woon;Ma, Seung-Jin;Gao, Tiancheng;Li, Hua;Lee, Tae-Hoon;Kim, In-Cheol;Ham, Kyung-Sik;Kang, Seong-Gook
    • Food Science and Preservation
    • /
    • v.14 no.4
    • /
    • pp.431-437
    • /
    • 2007
  • The primary objective of this study was to determine the effects of abalone in reducing blood pressure and increasing anti-coagulant capacity. The serum angiotensin-converting-enzyme (ACE) activities of rats on an abalone-supplemented diet did not significantly differ from the ACE levels of rats on a normal diet, at any time (before the experiment, or 1 week, 2 weeks, 3 weeks, and 4 weeks, after commencement of the abalone diet) during the experiment. This result showed that abalone-supplemented diets had no effect on the activity of ACE, which controls blood pressure. To determine if an abalone-containing diet might increase anti-coagulant capacity, both prothrombin (PT) and activated partial thromboplastin time (APTT) levels were measured. The PT levels of control rats remained constant throughout the experiment. In rats fed the abalone-containing diet, PT levels increased with time, and the increase became statistically significant after 2 weeks, when compared to pre-trial PT levels. Control rats showed no significant change in APTT levels over time. The rats fed abalone, however, showed significant differences in APTT levels. Specifically, when pre-trial APTT levels were compared with 4-week levels, and when 1-week levels were compared with 4-week levels, the differences attained statistical significance. These results indicate that an abalone-supplemented diet may inhibit blood coagulation in normal rats. The results of this study prove the inherent health value of abalone, and may encourage investment in the seafood industry. Future studies will explore other possible beneficial effects of abalone, apart from the anti-hypertension and anti-coagulant effects examined above.

Exfoliation of abalone, Haliotis discus hannai by commercial exfoliating reagents (시판 전복박리제의 박리 효과)

  • Kim, Wi-Sik;Kang, Min-Ho;Kim, Jong-Oh;Lee, Si-Woo;Kim, Jung;Hwang, Doo-Jin;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.26 no.2
    • /
    • pp.117-121
    • /
    • 2013
  • Three commercial exfoliating reagents, product A (main components: citric acid and vitamin C), B (herb) and C (nicotinamide), were used to study their exfoliation effect on abalone, Haliotis discus hannai from the substrate. The exfoliating reagents A, B, C and oxytetracycline (OTC, control) of 6-31.25 g/L and 12-37.5 g/L exfoliated 81.2-84.8% and 90.3-95% of abalone, respectively. Post-treatment recovery time for the abalone was similar for all the reagents except product C. Recovery period for the abalone immersed in OTC for 5-20 second was slightly shorter than the reagents A, B and C; however, no mortality was observed in any group except with the reagents B (concentration: 20 g/L, immersion time: 5 sec) and C (12 g/L, 10 and 20 sec) that showed negligible mortality of 3.3%. Higher concentration and longer treatment with the reagents resulted in longer recovery time of the detached abalone. Although abalone exposed to the reagents needs slightly longer time to recover than that to OTC, the exfoliation effect is much similar. These results indicate that the commercial exfoliating reagents can replace OTC to detach abalone, though they need to be cautiously handled.

Component of oxytetracycline on exfoliation of abalone, Haliotis discus hannai (옥시테트라사이클린의 전복박리 성분)

  • Kim, Wi-Sik;Kim, Jung;Hwang, Doo-Jin;Han, Jong-Seok;Lee, Si-Woo;Choi, Dong-Ik;Lim, Sang-Min;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.25 no.2
    • /
    • pp.123-126
    • /
    • 2012
  • Exfoliation of fouling abalone, Haliotis discus hannai from shelters by commercial oxytetracycline (OTC) was observed in culture farms. In the present study, different components of OTC for exfoliation of abalone were investigated to understand how to work. Abalone were detached from shelter in 14,000 ppm of commercial OTC (main ingredients of OTC: OTC-hydrogen chloride (HCl), 50%; glucose, 49%; blue pigment, <1%), but not below 8,000 ppm. A 95% of exfoliation rate was observed in OTC-HCl (7,000 ppm, pH 2.8) but no exfoliation in OTC-HCl (7,000 ppm, pH 5.0), glucose (7,000 ppm) or blue pigment (140 ppm). Moreover 100% exfoliation rate was observed in HCl-seawater of pH 2.8. These results indicate that HCl is the component resulting in exfoliation of the fouling abalone. Abalone was detached in HCl solution (pH 2.5-3.2) within 2 min. However, a lower pH and longer treatment resulted in delayed recovery of the detached abalone. Thus, exfoliation of fouling abalone can be achieved by a low pH treatment with cautious handling.