• Title/Summary/Keyword: ab initio study

Search Result 171, Processing Time 0.025 seconds

Determination of Reactivity by MO Theory (XX). An MO Theoretical Study on Mechanism of Thiocarbonyl Addition.

  • Lee, IK-Choon;Yang, Ki-Yull
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.4
    • /
    • pp.132-138
    • /
    • 1981
  • Ab initio molecular orbital calculations have been performed in an effort to determine which types of chemical interactions play essential roles for the system, , $H_2O+CH_2SH^+$, and $H_2O+ CH_2S$. The most important contribution to the interaction energy in controlling reaction path is the exchange repulsion energy, EX, which is largely responsible for the shape of the total interaction energy curve. In the ion-molecule reaction, prior protonation of thioformaldehyde or prior deprotonation of water leads to formation of the corresponding ionic adducts ($H_2O+CH_2SH$ and $HOCH_2S^-$), with no barrier to reaction, simulating specific acid and base catalysis, respectively, as in the case of formaldehyde. Otherwise, approach of water to thioformaldehyde gives rise to a completely repulsive interaction.

Ab initio Nuclear Shielding Calculations for Some X-Substituted Silatranes Using Gauge-Including Atomic Orbitals

  • 김동희;이미정
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.981-985
    • /
    • 1997
  • 13C, 15N, and 29Si NMR chemical shifts have been computed for selected X-substituted silatranes (X=Cl, F, H, CH3) using Gauge-Including Atomic Orbitals (GIAO) at the Hartree-Fock level of theory. The isotropic 13C chemical shifts are largely insensitive to substituent-induced structural changes. In this study, the isotropic 13C chemical shifts between 1-methyl- and 1-hydrogensilatranes by GIAO-SCF calculation at the HF/6-31G level are very similar. But the results of 1-chloro- and 1-fluorosilatranes are about 4 ppm different from the experimental values. In contrast, the isotropic 15N and 29Si chemical shifts and the chemical shielding tensors are quite sensitive to substituent-induced structural changes. These trends are consistent with those of the experiment. The isotropic 15N chemical shift demonstrates a very clear correlation with Si-N distance. But in case of 29Si the correlations are not as clean as for the 15N chemical shift; the calculated variation in the 29Si chemical shift is much larger.

Vibrational Analysis of Dopamine Neutral Bae based on Density Functional Force Field

  • Park, Seon Gyeong;Lee, Nam Su;Lee, Sang Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.1035-1038
    • /
    • 2000
  • Vibrational properties of dopamine neutral species in powder state have been studied by means of the normal mode analysis based on the force constants obtained from the density functional calculation at B3LYP level and the results of Fourier trans form Raman and infrared spectroscopic measurements. Ab initio calculation at MP2 level shows that the trans conformer of dopamine has higher electronic energy about 1.4 kcal/mol than those of the gauche+ and the gauche-conformers, and two gauche conformers have almost the same energies. Free energies calculated at HF and B3LYP levels show very similar values for three conformers within 0.3 kcal/mol. Empirical force field has been constructed from force constants of three conformers, and refined upon ex-perimental Raman spectrum of dopamine to rigorous values. The major species of dopamine neutral base in the powder state is considered a trans conformer as shown in the crystallographic study of dopamine cationic salt.

Syntheses and Theoretical Study of Palladium(II) Complexes with Aminophosphines as 7-Membered Chelate Rings

  • 김봉곤;양기열;정맹준;이배욱;도명기
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1162-1166
    • /
    • 1997
  • Nature of palladium(Ⅱ) complexes with 7-membered chelates was studied by experimental and theoretical methods on a Pd(L)Cl2 system, where L is Ph2PNHCH2CH2NHPPh2(L1), Ph2PNHC6H4NHPPh2(L2). The palladium(Ⅱ) complexes were prepared and characterized by elemental analysis, IR, UV, 1H, and 31P NMR spectroscopy. Ab initio calculations with geometry optimizations were also performed for related model systems, Pd(L)Cl2; L=R2PNH(CH2)2NHPR2(L3), R2PNHC6H4NHPR2(L4), R2P(CH2)4PR2(L5), R2PCH2(C6H4)CH2PR2(L6); R=H, CH3.

Ab initio Study for Electronic Property and Ferromagnetism of (Cu, N, or F)-codoped ZnO

  • Kang, Byung-Sub;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.163-167
    • /
    • 2012
  • The effects on the ferromagnetism of the O or Zn defect in Cu-doped ZnO with the concentration of 2.77-8.33% have been investigated by the first-principles calculations. The Cu doping in ZnO was calculated to be a kind of p-type ferromagnetic half-metals. When the Zn vacancy exists in Cu-doped ZnO, the Cu magnetic moment increases, while for the O vacancy it is reduced. It is noticeable that the ferromagnetic state was originated from the hybridized O(2p)-Cu(3d)-O(2p) chain formed through the p-d coupling. The carrier-mediated ferromagnetism by nitrogen or fluorine does not depend on their concentration.

A Comparative Study of the DFT and MP2 Methods Molecular Structure of Diphosphadithiatetrazocine

  • Jeong, Gyu Seong;Lee, Deok Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.3
    • /
    • pp.300-304
    • /
    • 2000
  • The B3LYP method based on the density functional theory(DFT) is shown to be much better than the ab initio MP2 method for structural determination of diphosphadithiatetrazocine systems having transannular S--S bonding. The presence of bonding between the two sulfur atoms across the cyclic ring is theoretically confirmed in the case of the neutral diphosphadithiatetrazocine. The S--S dobding disappears in the ionized species. The planarity of the dicationic heterocyclic ring system turns out to be closely associated with the $\pi-electron$ delocalization over the entire ring as well as the N-S-N bonds, which become stiffened upon ionizaiton. In the case of dianionic species, the chair-boat and chair conformers are nearly degenerate and far more stable than the crown conformer.

Subtractively Normalized Interfacial Fourier Transform Infrared Spectroscopic Study of Cyanide Ions at Gold Electrode

  • Son, Dong-Hee;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.357-360
    • /
    • 1994
  • The adsorption of cyanide ion on the gold electrode has been investigated by the subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS). The observations made by SNIFTIRS were consistent with those obtained by the polarization modulated Fourier transform infrared spectroscopy. According to the surface selection rule, cyanide ion appeared to adsorb on gold via either carbon or nitrogen lone pair electrons assuming a perpendicular orientation with respect to the metal surface. The possibility of presence of bridge-bound species seemed very infeasible. From the ab initio quantum mechanical calculation, adsorbate-to-metal bonding appeared to occur mainly via the $5{\sigma}$ donation from carbon to Au.

First-principles study of dissociation processes of O2 molecular on the Al (111) surface

  • Sun, Shiyang;Xu, Pingping;Ren, Yuan;Tan, Xin;Li, Geyang
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1528-1533
    • /
    • 2018
  • The trajectories of adsorption and dissociation process of $O_2$ on the Al (111) surface were studied by the spinpolarized ab initio molecular dynamics method, and the adsorption activation energy was clarified by the NEB method with hybrid functionals. Three typical dissociation trajectories were found through simulation of $O_2$ molecule at different initial positions. When vertically approaches to the Al surface, the $O_2$ molecule tends to rotate, and the activation energy is 0.66eV. If $O_2$ molecule does not rotate, the activation energy will increase to 1.43 eV, and it makes the O atom enter the Al sublayer eventually. When the $O_2$ molecules parallel approach to the Al surface, there is no activation energy, due to the huge energy released during the adsorption process.

Theoretical Study on the Hydrogen-Bonding Effect of H2On-H2Om (n=1-4, m=1-4) Dimers (H2On-H2Om (n=1-4, m=1-4) 이중합체의 수소결합에 따른 구조적 특성 및 결합에너지에 관한 이론 연구)

  • Song, Hui-Seong;Seo, Hyun-Il;Shin, Chang-Ho;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • The DFT and ab initio calculations have been performed to elucidate hydrogen interaction of hydrogen polyoxide dimers, $H_2O_n-H_2O_m$ (n=1-4, m=1-4). The optimized geometries, harmonic vibrational frequencies, and binding energies are predicted at various levels of theory. The harmonic vibrational frequencies of the molecules considered in this study show all real numbers implying true minima. The higher-order correlation effect were discussed to compare MP2 result with CCSD(T) single point energy. The binding energies were corrected for the zero-point vibrational energy (ZPVE) and basis set superposition errors (BSSE). The largest binding energy predicted at the CCSD(T)/cc-pVTZ level of theory is 8.18 kcal/mol for $H_2O_4-H_2O_3$ and the binding energy of water dimer is predicted to be 3.00 kcal/mol.

Solvent Effect on $Rb^+$ to $K^+$ Iron Mutation: Monte Carlo Simulation Study

  • Kim, Hak Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.503-509
    • /
    • 2000
  • The solvent effects on the relative free energies of solvation and the difference in partition coefficients (log P) for $Rb^+$ to $K^+$ mutation in several solvents have been investigated using Monte Carlo simulation (MCS) of statistical perturbation theory(SPT). In comparing the relative free energies for interconversion of one ion pair, $Rb^+$ to $K^+$, in $H_2O$(TIP4P) in this study with the relative free energies of the computer simulations and the experimental, we found that the figure in this study with the relative free energies of the computert simulations and the experimental, we found that the figure in this study is $-5.00\pm0.11$ kcal/mol and those of the computer simulations are $-5.40\pm1.9$, -5.5, and -5.4 kcal/mol. The experimental is -5.1 kcal/mol. There is good agreement among various studies, taking into account both methods used to obtain the hydration free energies and standard deviations. There is also good agreement between the calculated structural properties of this study and the simulations, ab initio and the experimental results. We have explained the deviation of the relationship between the free energy difference and the Onsager dielectric function of solvents by the electron pair donor properties of the solvents. For the $Rb^+$ and $K^+$ ion pair, the Onsager dielectric function of solvents (or solvent permittivity), donor number of solvent and the differences in solvation dominate the differences in the relative free energies of solvation and partition coefficients.