• 제목/요약/키워드: ab initio

검색결과 422건 처리시간 0.024초

Electronic and carrier transport properties of small molecule donors

  • Valencia-Maturana, Ramon;Pao, Chun-Wei
    • Coupled systems mechanics
    • /
    • 제6권1호
    • /
    • pp.75-96
    • /
    • 2017
  • As electron donor/acceptor materials for organic photovoltaic cells, small-molecules donors/acceptor are attracting more and more attention. In this work, we investigated the electronic structures, electrochemical properties, and charge carrier transport properties of four recently-synthesized small-molecule donors/acceptor, namely, DPDCPB (A), DPDCTB (B), DTDCPB (A1), and DTDCTB (B1), by a series of ab initio calculations. The calculations look into the electronic structure of singly oxidized and reduced molecules, the first anodic and cathodic potentials, and the electrochemical gaps. Results of our calculations were in accord with those from experiments. Using Marcus theory, we also computed the reorganization energies of hole/electron hoppings, as well as hole/electron transfer integrals of multiple possible molecular dimer configurations. Our calculations indicated that the electron/hole transport properties are very sensitive to the relative separations/orientations between neighboring molecules. Due to high reorganization energies for electron hopping, the hole mobilities in the molecular crystals are at least an order of magnitude higher than the electron mobilities.

Footprints of water molecules on Si(001) and co-adsorption configurations obtained via low temperature scanning tunneling microscopy

  • Tham, Tran Thi;Son, Lee-Seul;Oh, Suhk-Kun;Kang, Hee-Jae;Kim, Han-Chul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.86-86
    • /
    • 2010
  • Water adsorption on Si(001)-c($4{\times}2$) surface is investigated at low temperature by using scanning tunneling microscope (STM) and ab initio pseudopotential calculations. $H_2O$ configurations of single and cluster of two molecules reveal "Y", "X" and "W" depressions as footprints on the surface. Atomic structures of $H_2O$ molecules, which are dissociatively adsorbed on the Si(001)-c($4{\times}2$) surface, are studied with simulated and STM images of the filled states. The generation processes of the growth configurations are systematically considered with elapsed time.

  • PDF

Basicity of Urea: Near-Infrared Spectroscopic and Theoretical Studies on the Hydrogen Bonding Ability of TMU and DMDPU

  • 이호진;최영상;박정희;윤창주
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권1호
    • /
    • pp.110-114
    • /
    • 1998
  • The hydrogen-bonding interactions between thioacetamide (TA) and urea derivatives such as tetramethylurea (TMU) and dimethyldiphenylurea (DMDPU) have been studied using near-infrared absorption spectroscopy. Thermodynamic parameters for the interactions between TA and urea derivatives were determined by analyzing the $v^{as}_{N-H}$+Amide Ⅱ combination band of TA at 1970 nm. The ΔH° values, indicating the intrinsic strength of hydrogen bonding, are - 23.0 kJ/mole and - 19.8 kJ/mol for TMU and DMDPU, respectively. This is well explained by the inductive effects of substituents. Ab initio molecular orbital calculations for the proton affinity of TMU, N,N-dimethylformamide (DMF), and N,N-dimethylacetamide (DMA) in gas phase have been carried out at HF/3-21G ad HF/6-31G(d) levels, showing that the proton affinity of TMU is larger than that of DMA, which agrees well the experimental results.

The Terminal-Phosphinidene Complexes. Bonding, Geometrical Optimization, and Electronic Considerations

  • Ko, Jae-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권3호
    • /
    • pp.117-121
    • /
    • 1988
  • The molecular interaction and geometrical optimization of Cr$(CO)_5\;and\;Ni(CO)_3$ units have been studied for phosphinidene complex by means of extended Huckel calculations. The results were compared with those of ab initio calculations and found to be in qualitative agreement. Geometrical optimization of HPCr$(CO)_5\;(1)\;and\;HPNi(CO)_3$ (2) gave the values R = 2.36 ${\AA}$, ${\theta}$ = $111.5^{\circ}$, and ${\phi}$ = $45^{\circ}$for 1, and R = 2.37 ${\AA}$, ${\theta}$= $120^{\circ}$, and ${\phi}$ = $58^{\circ}$for 2. It is found that the low rotational barriers for 1(0.46 kcal $mol^{-1}$) and 2(0.12 kcal $mol^{-1}$) would be accompanied by the free rotation, in spite of the fact that both 1 and 2 adopt staggered conformations.

Determination of Reactivity by MO Theory (XX). An MO Theoretical Study on Mechanism of Thiocarbonyl Addition.

  • Lee, IK-Choon;Yang, Ki-Yull
    • Bulletin of the Korean Chemical Society
    • /
    • 제2권4호
    • /
    • pp.132-138
    • /
    • 1981
  • Ab initio molecular orbital calculations have been performed in an effort to determine which types of chemical interactions play essential roles for the system, , $H_2O+CH_2SH^+$, and $H_2O+ CH_2S$. The most important contribution to the interaction energy in controlling reaction path is the exchange repulsion energy, EX, which is largely responsible for the shape of the total interaction energy curve. In the ion-molecule reaction, prior protonation of thioformaldehyde or prior deprotonation of water leads to formation of the corresponding ionic adducts ($H_2O+CH_2SH$ and $HOCH_2S^-$), with no barrier to reaction, simulating specific acid and base catalysis, respectively, as in the case of formaldehyde. Otherwise, approach of water to thioformaldehyde gives rise to a completely repulsive interaction.

Electronic Spectroscopy and Structure of CLF

  • Vadim A. Alekseev;D. W. Setser
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권1호
    • /
    • pp.9-22
    • /
    • 2000
  • Optical-optical double resonance experiments have been used to identify and characterize five ion-pair states and several of the bound and repulsive valence states of ClF. This report provides a description of these experiments for $^{35}CIF$ and $^{37}CIF$, and a summary of the current knowledge of the valence and ion-pair states. The important role of perturbations among the rovibronic levels of the bound valence states and their utilization in the double resonance technique is discussed. The ion-pair states of the same symmetry, ${\Omega}$=$0^+$ (E and f) and 1( $\beta$ and G) interact very strongly and the spectroscopy of these states is anomalous and, hence, interesting. Comparison is made to some recent ab initio calculations for ClF. One possible explanation of the irregular vibrational energy levels and rotational constants of the ion-pair states of $O^+$ and 1 symmetry is a crossing of the diabatic potentials of these states. Some currently unresolved questions about ClF spectroscopy are posed for future work. Where appropriate, analogy is made between the electronic states of ClF and the corresponding valence and ion-pair states of $Cl_2.$.

Ab Initio Studies of Lithium Bonded Complexes with H$_2$O Molecule

  • Baik, Dae-Hyun;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권3호
    • /
    • pp.126-129
    • /
    • 1988
  • Lithium bonded complexes with $H_2O$ molecule were investigated theoretically by varying the substituent of lithium compound as follows; LiH, LiLi, $LiCH_3,\;LiNH_2$, LiOH, LiF, and LiCl. Some hydrogen bonded complexes with $H_2O$ molecule were also investigated to be compared with lithium bonded analogues. Electron correlation effect on the structures and energies of lithium bond was also investigated through MP2 and MP4 corrections. Unlike hydrogen bond with $H_2O$ molecule, lithium bonded complexes with $H_2O$ molecule were found to be interacting linearly with $H_2O$ molecule. Electron correlation effect was very small for lithium bonded complexes. The lithium bond energies were found to be less affected by the choice of substituent of lithium compound.

Comparable Structural Stabilities of Penta- and Hexa-coordinate Zn(II) in a Simple Model System of the Active Site of Carboxypeptidase A

  • Sik Lee;Seung Joo Cho;Jong Keun Park;Hag-Sung Kim;Kim Kwang S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권9호
    • /
    • pp.774-776
    • /
    • 1994
  • Ab initio studies of simple model systems for the carboxypeptidase A active site indicate that penta-and hexa-coordinate Zn(II) complexes have comparable structural stabilities. These facile coordination structures can be responsible for the catalytic role. Although the hexa-coordinate Zn(II) complex is more stable in enthalpy than the penta-coordinate Zn(II) complex, the entropy effect makes the latter as stable as or slightly more stable in free energy than the former.

Tightness of the Transition State for the Reactions of Secondary Alkyl Arenesulfonates with Anilines in Acetonitrile

  • 오혁근;권영봉;정동수;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권9호
    • /
    • pp.827-831
    • /
    • 1995
  • Kinetic studies on the reactions of five secondary acylic alkyl arenesulfonates with anilines are carried out in acetonitrile at 65.0 ℃. The magnitude of ρXZ determined (ρXZ=0.12-0.13) is slightly greater than that for the alicyclic series (ρXZ=0.11) under the same experimental condition. Ab initio MO results are found to support the slightly tighter transition state expected from the greater magnitude of ρXZ for the acyclic series. Despite the small variations, the magnitude of ρXZ and the theoretical transition state tightness remain relatively constant for the secondary carbon centers. Secondary kinetic isotope effects involving deuterated aniline nucleophiles show a successively smaller kH/kD(<1.0) value for a more sterically crowded reaction center carbon. This is in accord with the later transition state for bond-making predicted by the Bell-Evans-Polanyi principle for the more endothermic nucleophilic substitution reaction. Further support is provided by the results of the AM1 MO calculations on the reactions of secondary alkyl benzenesulfonates with chloride nucleophile.

Theoretical Studies on the Acid-Catalyzed Hydrolysis of Sulfinamide

  • 김찬경;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권8호
    • /
    • pp.880-886
    • /
    • 1997
  • Ab initio calculations were carried out on the gas phase acid-catalyzed hydrolysis reactions of sulfinamide using the 3-21G* basis sets. Single point calculations were also performed at the MP2/6-31G* level. The first step in the acid-catalyzed hydrolysis of N-methylmethanesulfinamide, Ⅰ, involves protonation. The most favorable form is the O-protonated one, Ⅱ, which is then transformed into a sulfurane intermediate, Ⅲ, by addition of a water molecule. The reaction proceeds further by an intramolecular proton transfer from O to N (TS2), which is followed by N-S bond cleavage (TS3) leading to the final products. The rate determining step is the N-S bond cleavage (TS3) at the RHF/3-21G* level, whereas it becomes indeterminable at the MP2/6-31G*//3-21G* level of theory. However, the substituent effect studies with N-protonated N-arylmethanesulfinamide, ⅩⅢ, at the MP2/6-31G*//3-21G* level support the N-S bond breaking step as rate limiting.