• Title/Summary/Keyword: a-plane

Search Result 11,063, Processing Time 0.042 seconds

Elastic Analysis of a Half-Plane Containing an Inclusion and a Void Using Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한, 함유체와 공동을 포함한 반무한 고체에서의 탄성해석)

  • Lee, Jung-Ki;Yoon, Koo-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1072-1087
    • /
    • 2008
  • A mixed volume and boundary integral equation method (Mixed VIEM-BIEM) is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing an isotropic or anisotropic inclusion and a void subject to remote loading parallel to the traction-free boundary. A detailed analysis of stress field at the interface between the isotropic matrix and the isotropic or orthotropic inclusion is carried out for different values of the distance between the center of the inclusion and the traction-free surface boundary in an isotropic elastic half-plane containing three different geometries of an isotropic or orthotropic inclusion and a void. The method is shown to be very accurate and effective for investigating the local stresses in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions and multiple voids.

Reliability of analytical models for the prediction of out-of-plane capacity of masonry infills

  • Pasca, Monica;Liberatore, Laura;Masiani, Renato
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.765-781
    • /
    • 2017
  • The out-of-plane response of infill walls has recently gained a growing attention and has been recognised fundamental in the damage assessment of reinforced concrete and steel framed buildings subjected to seismic loads. The observation of damage after earthquakes highlighted that out-of-plane collapse of masonry infills may occur even during seismic events of low or moderate intensity, causing both casualty risks and unfavourable situations affecting the overall structural response. Even though studies concerning the out-of-plane behaviour of infills are not as many as those focused on the in-plane response, in the last decades, a substantial number of researches have been carried out on the out-of-plane behaviour of infills. In this study, the out-of-plane response is investigated considering different aspects. First, damages observed after past earthquakes are examined, with the aim of identifying the main parameters involved and the most critical configurations. Secondly, the response recorded in about 150 experimental tests is deeply examined, focusing on the influence of geometrical characteristics, boundary conditions, prior in-plane damage, presence of reinforcing elements and openings. Finally, different theoretical capacity models and code provisions are discussed and compared, giving specific attention to those based on the arching theory. The reliability of some of these models is herein tested with reference to experimental results. The comparison between analytically predicted and experimental values allows to appreciate the extent of approximation of such methods.

Study on Section Properties of Asymmetric-Sectioned Vessels (선박의 비대칭 단면 특성에 대한 연구)

  • Choung, Joon-Mo;Kim, Young-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.843-849
    • /
    • 2010
  • This paper presents definition of symmetry of a ship section where three symmetries are proposed: material, geometric, and load symmetries. Precise terminologies of centroid, moment plane, and neutral axis plane are also defined. It is suggested that force vector equilibrium as well as force equilibrium are necessary condition to determine new position of neutral axis due to translational and rotational mobility. It is also stated that new reference datum of ENMP(elastic neutral moment plane), PNMP(fully plastic moment plane), ENAP(elastic neutral axis plane), and INAP(inelastic neutral moment plane) are required to define asymmetric section properties such as second moment of area, elastic section modulus, yield moment, fully plastic moment, and ultimate moment. Since collision-induced damage and flooding-induced biaxial bending moment produce typical asymmetry of section, the section properties are calculated for a typical VLCC. Geometry asymmetry is determined from ABS and DNV rules and two moment planes of 0/30 degs are assumed for load asymmetry. It is proved that the property reduction ratios directly calculated from second moment of area are usually larger than area reduction ratio. Reduction ratio of ultimate moment capacity shows almost linearly proportional to area reduction ratio. Mobility of elastic and inelastic neutral axis planes is visually provided.

Evaluation of Effect of Decrease in Metallic Artifacts using the Synthetic MR Technique (Synthetic MR 기법을 이용한 금속 인공물 감소 효과 평가)

  • Soon-Yong, Kwon;Nam-Yong, Ahn;Jeong-Eun, Oh;Seong-Ho, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.835-842
    • /
    • 2022
  • This study is aimed to evaluate the effects of a synthetic MR technique in reducing metal artifacts. In the experiment, the in-plane and through-plane images were acquired by applying a synthetic MR technique and a high-speed spin echo technique to a phantom manufactured with screw for spinal surgery. The area of the metal artifact was compared. The metal artifacts were measured by dividing the signal-loss and the signal pile-up areas, and the area of the final artifact was calculated through the sum of the two. As a result, the metal artifacts were relatively reduced when the synthetic MR techniques were applied to both in-plane and through-plane. Comparing by sequence, the in-plane T1 images decreased by 23.45%, T2 images by 20.85%, PD images by 19.67%, and FLAIR images by 22.12%. Also, in the case of the through-plane, the T1 image decreased by 62.95%, the T2 image decreased by 73.93%, the PD image decreased by 74.68%, and the FLAIR image decreased by 66.43%. The cause of this result is that when the synthetic MR technique is applied, the distortion is due to the signal pile-up and does not occur and the size of the entire metal artifact is reduced. Therefore, synthetic MR technique can very effectively reduce metal artifacts, which can help to increase the diagnostic value of images.

ON POLAR TAXICAB GEOMETRY IN A PLANE

  • Park, Hyun Gyu;Kim, Kyung Rok;Ko, Il Seog;Kim, Byung Hak
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.783-790
    • /
    • 2014
  • Most distance functions, including taxicab distance, are defined on Cartesian plane, and recent studies on distance functions have been mainly focused on Cartesian plane. However, most streets in cities include not only straight lines but also curves. Therefore, there is a significant need for a distance function to be defined on a curvilinear coordinate system. In this paper, we define a new function named polar taxicab distance, using polar coordinates. We prove that this function satisfies the conditions of distance function. We also investigate the geometric properties and classifications of circles in the plane with polar taxicab distance.

Improvement of the Light Emission Efficiency on Nonpolar a-plane GaN LEDs with SiO2 Current Blocking Layer (무분극 a-plane 질화물계 발광다이오드에서 SiO2 전류 제한 층을 통한 발광 효율 증가)

  • Hwang, Seong Joo;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.175-179
    • /
    • 2017
  • In this study, we investigate the $SiO_2$ current blocking layer (CBL) to improve light output power efficiency in nonpolar a-plane (11-20) GaN LEDs on a r-plane sapphire substrate. The $SiO_2$ CBL was produced under the p-pad layer using plasma enhanced chemical vapor deposition (PECVD). The results show that nonpolar GaN LED light output power with the $SiO_2$ CBL is considerably enhanced compared without the $SiO_2$ CBL. This can be attributed to reduced light absorption at the p-pad due to current blocking to the active layer by the $SiO_2$ CBL.

Effect of Loading Split-Ring Resonators in a Microstrip Antenna Ground Plane

  • Lee, Hong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.120-122
    • /
    • 2015
  • This study presents a new, simple method for improving the front-to-back (F/B) ratio of a microstrip patch antenna (MSA) based on surface wave suppression. The back radiation of the MSA is significantly reduced by using the meandered ground plane edges and placing split-ring resonators (SRRs) in the middle of the meandered slots. By loading SRRs near the center of the meandered ground plane edges, some parts of the diffracted back-lobe power density can be reduced further. Compared to the F/B ratio of a conventional MSA with a full ground plane of the same size, an improved F/B ratio of 18 dB has been achieved experimentally for our proposed MSA.

Ranking-based Flow Replacement Method for Highly Scalable SDN (고확장성 SDN을 위한 랭킹 기반 플로우 교체 기법)

  • Tri, Hiep T. Nguyen;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.143-146
    • /
    • 2015
  • Software Defined Network (SDN) separates control plane and data plane to achieve benefits such as centralized management, centralized provisioning, lower device cost and more flexibility. In SDN, scalability is an important issue. Centralized controller can be a bottle neck and many research tried to solve this issue on the control plan. However, scalability issue does not only happen in the control plane, but also happen in the data plane. In the data plane, flow table is an important component and its size is limited. In a large network operated by SDN technology, the performance of the network can be highly degraded because of the size limitation of a flow table. In this paper, we propose a ranking-based flow replacement method, Flow Table Management (FTM), to overcome this problem.

The 3D Geometric Information Acquisition Algorithm using Virtual Plane Method (가상 평면 기법을 이용한 3차원 기하 정보 획득 알고리즘)

  • Park, Sang-Bum;Lee, Chan-Ho;Oh, Jong-Kyu;Lee, Sang-Hun;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1080-1087
    • /
    • 2009
  • This paper presents an algorithm to acquire 3D geometric information using a virtual plane method. The method to measure 3D information on the plane is easy, because it's not concerning value on the z-axis. A plane can be made by arbitrary three points in the 3D space, so the algorithm is able to make a number of virtual planes from feature points on the target object. In this case, these geometric relations between the origin of each virtual plane and the origin of the target object coordinates should be expressed as known homogeneous matrices. To include this idea, the algorithm could induce simple matrix formula which is only concerning unknown geometric relation between the origin of target object and the origin of camera coordinates. Therefore, it's more fast and simple than other methods. For achieving the proposed method, a regular pin-hole camera model and a perspective projection matrix which is defined by a geometric relation between each coordinate system is used. In the final part of this paper, we demonstrate the techniques for a variety of applications, including measurements in industrial parts and known patches images.

Nonlocal effects on propagation of waves in a generalized thermoelastic solid half space

  • Singh, Baljeet;Bijarnia, Rupender
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.473-479
    • /
    • 2021
  • The propagation of plane waves in a linear, homogeneous and isotropic nonlocal generalized thermoelastic solid medium is considered in the framework of Lord and Shulman generalization. The governing field equations are formulated and specialized in a plane. Plane wave solutions of governing equations show that there exists three plane waves, namely, P, thermal and SV waves which propagate with distinct speeds. Reflection of P and SV waves from thermally insulated or isothermal boundary of a half-space is considered. The relevant boundary conditions are applied at stress free boundary and a non-homogeneous system of three equations in reflection coefficients is obtained. For incidence of both P and SV waves, the expressions for energy ratios of reflected P, thermal and SV waves are also obtained. The speeds and energy ratios of reflected waves are computed for relevant physical constants of a thermoelastic material. The speeds of plane waves are plotted against nonlocal parameter and frequency. The energy ratios of reflected waves are also plotted against the angle of incidence of P wave at a thermally insulated stress-free surface. The effect of nonlocal parameter is shown graphically on the speeds and energy ratios of reflected waves.