• Title/Summary/Keyword: a-Si Solar Cell

Search Result 509, Processing Time 0.031 seconds

Investigation of the crystalline silicon solar cells with porous silicon layer (다공성 실리콘 막을 적용한 결정질 실리콘 태양전지 특성 연구)

  • Lee, Eun-Joo;Lee, Il-Hyung;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.295-298
    • /
    • 2007
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating(ARC) and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si ARC layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated with SEM. The formation of a nanoporous Si layer about 100nm thick on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.

  • PDF

Rear Surface Passivation with Al2O3 Layer by Reactive Magnetron Sputtering for High-Efficiency Silicon Solar Cell

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Jeon, Jun-Hong;Choi, Jin-Young;Kim, Dong-Hwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.211-211
    • /
    • 2012
  • The electrical loss of the photo-generated carriers is dominated by the recombination at the metal- semiconductor interface. In order to enhance the performance of the solar cells, many studies have been performed on the surface treatment with passivation layer like SiN, SiO2, Al2O3, and a-Si:H. In this work, Al2O3 thin films were investigated to reduce recombination at surface. The Al2O3 thin films have two advantages, such as good passivation properties and back surface field (BSF) effect at rear surface. It is usually deposited by atomic layer deposition (ALD) technique. However, ALD process is a very expensive process and it has rather low deposition rate. In this study, the ICP-assisted reactive magnetron sputtering method was used to deposit Al2O3 thin films. For optimization of the properties of the Al2O3 thin film, various fabrication conditions were controlled, such as ICP RF power, substrate bias voltage and deposition temperature, and argon to oxygen ratio. Chemical states and atomic concentration ratio were analyzed by x-ray photoelectron spectroscopy (XPS). In order to investigate the electrical properties, Al/(Al2O3 or SiO2,/Al2O3)/Si (MIS) devices were fabricated and characterized using the C-V measurement technique (HP 4284A). The detailed characteristics of the Al2O3 passivation thin films manufactured by ICP-assisted reactive magnetron sputtering technique will be shown and discussed.

  • PDF

Effect of p-type a-SiO:H buffer layer at the interface of TCO and p-type layer in hydrogenated amorphous silicon solar cells

  • Kim, Youngkuk;Iftiquar, S.M.;Park, Jinjoo;Lee, Jeongchul;Yi, Junsin
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.336-340
    • /
    • 2012
  • Wide band gap p-type hydrogenated amorphous silicon oxide (a-SiO:H) buffer layer has been used at the interface of transparent conductive oxide (TCO) and hydrogenated amorphous silicon (a-Si:H) p-type layer of a p-i-n type a-Si:H solar cell. Introduction of 5 nm thick buffer layer improves in blue response of the cell along with 0.5% enhancement of photovoltaic conversion efficiency (η). The cells with buffer layer show higher open circuit voltage (Voc), fill factor (FF), short circuit current density (Jsc) and improved blue response with respect to the cell without buffer layer.

Comparison assessment of semi-transparent solar cell for BIPV windows (반투과형 태양전지를 이용한 창호형 BIPV 건물의 환경성능 분석)

  • Chung, Min Hee
    • Land and Housing Review
    • /
    • v.11 no.1
    • /
    • pp.87-94
    • /
    • 2020
  • To implement the planning of zero-energy buildings, their energy performance must be improved, and renewable energy applications must also be included. To accelerate the use of renewable energies in such buildings, BIPVs should be actively used in windows and on roofs. Window-type BIPVs are being developed in various forms depending on the size, composition, area ratio of the window, specification of glass, and so on. To analyze the applicability of various solar cells as window-type BIPVs, in this study, we evaluated their applicability, at the current development level, by analyzing the indoor illuminance, heat gain and heat loss; the cooling, heating, and lighting energy levels; and the generation performance of the various solar cells. To enhance the future applicability of window type BIPV, we analyze the overall energy performance of the building, according to changes in visible light transmittance and generation efficiency. The main research results are as follows. The area ratios above the standard illuminance, based on the window type and according to the VLT, were in order of low-e glazing, a-Si window, DSSC window, and c-Si window. The heat gain of the semi-transparent solar cell winodw was remarkably low. The energy consumption of buildings was highest in the order of c-Si window, DSSC window, a-Si window, and clear low-e window. However, in the case of including the power generation performance of the solar cell, the energy consumption was found to be high in order of DSSC window, c-Si window, a-Si window, and clear low-e window. In the future, if a window-type BIPV is developed, we believe that improvement in power generation performance and improvement in visible light transmittance will be needed.

Buried contact solar cells using tri-crystalline silicon wafer (삼상 실리콘 기판을 사용한 저가 전극 함몰형 태양전지)

  • Kwon, Jea-Hong;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.176-180
    • /
    • 2003
  • Tri-crystalline silicon (Tri-Si) wafers have three different orientations and three grain boundaries. In this paper, tri-Si wafers have been used for the fabrication of buried contact solar cells. The optical and micro-structural properties of these cells after texturing in KOH solution have been investigated and compared with those of cast multi-crystalline silicon (multi-Si) wafers. We employed a cost effective fabrication process and achieved buried contact solar cell (BCSC) energy conversion efficiencies up to 15% whereas the cast multi-Si wafer has efficiency around 14%.

  • PDF

Characterization of the protocrystalline silicon multilayer solar cells (프로터결정 실리콘 다층막 태양전지의 특성 연구)

  • Kwon, Seong-Won;Kwak, Joong-Hwan;Myong, Seung-Yeop;Lim, Koeng-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.145-148
    • /
    • 2006
  • The protocrystalline silicon (pc-Si:H) multilayer solar cell is very promising owing to its fast stabilization with low degradation against light irradiation. However, the pc-Si:H multi layers have not extensively been investigated in detail on its material characteristics yet. We present the material characteristics of pc-Si:H multilayer using a transmission electron microscopy(TEM), and Raman spectroscopy. In addition, we present the superior light-soaking behavior of the pc-Si:H mutt i layer solar cell. A TEM micrograph shows that a pc-Si:H multilayer has a repeatedly layered structure and crystalline-like objects in a-Si:H matrix. A Raman spectra introduces improved short-range-order and medium-range-order in pc-Si:H multilayer. As a result the excellent metastability of the pc-Si:H multilayer solar cell is primarily due to the repeatedly layered structure that improves a structural order in absorber layer.

  • PDF

AFORS HET Simulation for Optimization of High Efficiency HIT Solar Cell (고효율 HIT Solar Cell 제작을 위한 AFORS HET 시뮬레이션 실험)

  • Cho, Soo-Hyun;Heo, Jong-Kyu;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.450-451
    • /
    • 2008
  • Amorphous silicon Solar cell has n-i-p structure in general, and each layer's thickness and doping concentration are very important factors which are as influential on efficiency of salar cell. Using AFORS HET simulation to get the high efficiency, by adjusting n layer's thickness and doping concentration, p layer's doping concentration. The optimized values are a-Si:H(n)'s thickness of 1nm, a-Si:H(n)r's doping concentration of $2\times10^{20}cm^{-3}$, a-Si:H(p+)r's doping concentration of $1\times10^{19}cm^{-3}$. After optimization, the solar cell shows $V_{oc}$=679.5mV, $J_{sc}$=39.02mA/$cm^2$, FF=83.71%, and a high Efficiency=22.21%. Though this study, we can use this study for planning or manufacturing solar cell which has high efficiency.

  • PDF

Application of Novel BSF Metal and Laser Annealing to Silicon Heterojunction Solar Cell

  • Bong, Seong-Jae;Kim, Seon-Bo;An, Si-Hyeon;Park, Hyeong-Sik;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.491.2-491.2
    • /
    • 2014
  • Generally, silicon heterojunction solar cell has intrinsic and n-type of hydrogenated amorphous silicon (a-Si:H) as passivation layer and BSF layer. In this study, antimony, novel material, deposited on back side of the heterojunction solar cell as passivation and BSF layer to substitute the a-Si:H and the characteristics of the solar cell such electrical properties and optical properties were analyzed. And SIMS analysis was carried out to obtain the depth profile of the BSF layer which was deposited by laser annealing process.

  • PDF

Co-firing Optimization of Crystalline Silicon Solar Cell Using Rapid Thermal Process (급속 열처리 공정을 이용한 결정질 실리콘 태양전지의 전극 소결 최적화)

  • Oh, Byoung-Jin;Yeo, In-Hwan;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.236-240
    • /
    • 2012
  • Limiting thermal exposure time using rapid thermal processing(RTP) has emerged as promising simplified process for manufacturing of solar cell in a continuous way. This paper reports the simplification of co-firing using RTP. Actual temperature profile for co-firing after screen printing is a key issue for high-quality metal-semiconductor contact. The plateau time during the firing process were varied at $450^{\circ}C$ for 10~16 sec. Glass frit in Ag paste etch anti-reflection layer with plateau time. Glass frit in Ag paste is important for the Ag/Si contact formation and performances of crystalline Si solar cell. We achieved 17.14% efficiency with optimum conditions.

The effects of TCO/p-layer Interface on Amorphous Silicon Solar Cell (비정질 실리콘 태양전지에서 TCO/p층 계면 특성의 영향)

  • Ji, I.H.;Suh, S.T.;Choi, B.S.;Hong, S.M.
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.68-73
    • /
    • 1988
  • In the glass/TCO/p-i-n a-Si/Al type of amorphous silicon solar cell, the effects on solar cell efficiency and metastability for the various kinds of TCO analyzed by SAM and ESCA, which was used to measure the diffusion profiles of In and Sn and the Fermi energy shifts in the TCO/p interface respectively. Indium which diffused into a-Si p-layer did not have any significant effects on the Fermi level shift of p-layer when the content of $B_2H_6/SiH_4$ in p-layer was at 1 gas%. The cell fabricated on $SnO_2$ turned out to have the best cell photovoltaic characteristics. ITO fabricated by electron beam deposition system, which was shown to have the greatest rate of diffusion of Indium in ITO/p interface produced the worst metastability among the cells tested.

  • PDF