• Title/Summary/Keyword: a-Si Solar Cell

Search Result 509, Processing Time 0.03 seconds

A Study of High-efficiency me-silicon solar cells for SiNx passivation (SiNx passivation에 따른 Solar Cell의 효율향상에 관한 연구)

  • Ko, Jae-Kyung;Lim, Dong-Gun;Kim, Do-Young;Park, Sung-Hyun;Park, Joong-Hyun;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.964-967
    • /
    • 2002
  • The effectiveness of silicon nitride SiNx surface passivation is investigated and quantified. This study adopted single-layer antireflection (SLAR) coating of SiNx for efficiency improvement of solar cell. The silicon nitride films were deposited by means of plasma enhanced chemical vapor deposition (PECVD) in planar coil reactor. The process gases used were pure ammonia and a mixture of silane and helium. The thickness and the refractive index on the films were measured by ellipsometry and chemical bonds were determined by using an FT-IR equipment. This films obtained were analyzed in term of hydrogen content, refractive index for gas flow ratio $(NH_3/SiH_4)$, and efficiency of solar cell. The polycrystalline silicon solar cells passivated by silicon nitride shows efficiency above 12.8%.

  • PDF

Manufacturing and Thermal Process Optimization of Ag-paste for Fabricating High Efficiency Mono-Si Solar Cell (고효율 단결정 Si 태양전지 제작을 위한 은 페이스트의 제조 및 열 공정 최적화)

  • Pi, Ji-Hee;Kim, Sung-Jin;Son, Chang-Rok;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.144-150
    • /
    • 2013
  • A New Ag-pastes were developed for integrating the high efficiency mono-Si solar cell. The pastes were the mixture of 84 wt% Ag, 2 wt% glass frit, 11 wt% solvent of buthyl cabitol acetate, and 3 wt% additives. After fabricating the Ag-pastes by using a 3-roll mill, they were coated on a $SiN_x$/n+/p- stacks of a commercial mono-Si solar cell. And the post-thermal process was also optimized by varying the process conditions of peak temperature. The optimized solar cell efficiency on a 6-inch mono-Si wafer was 18.28%, which was the one of the world best performances. It meaned that the newly developed Ag-paste could be adopted to fabricate a commercial bulk Si solar cell.

A study on the fabrication of poly crystalline Si wafer by vacuum casting method and the measurement of the efficiency of solar cell

  • Lee, Geun-Hee;Lee, Zin-Hyoung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.120-125
    • /
    • 2002
  • Si-wafers for solar cells were cast in a size of $50{\times}46{\times}0.5{\textrm}{mm}^3$ by vacuum casting method. The graphite mold coated by BN powder, which was to prevent the reaction of carbon with the molten silicon, was used. Without coating, the wetting and reaction of Si melt to graphite mold was very severe. In the case of BN coating, SiC was formed in the shape of tiny islands at the surface of Si wafer by the reaction between Si-melt and carbon of the graphite mold on the high temperature. The grain size was about 1 mm. The efficiency of Si solar cell was lower than that of Si solar cell fabricated on commercial single and poly crystalline Si wafer. The reason of low efficiency was discussed.

Effects of optical properties in hydrogenated amorphous silicon germanium alloy solar cells (a-SiGe solar cell의 광학적 특성)

  • Baek, Seungjo;Park, Taejin;Kim, Beomjoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.67.1-67.1
    • /
    • 2010
  • Triple junction solar cell을 위한 a-SiGe middle cell의 조건별 광학적 특성에 관한 연구를 실시하였다. a-SiGe I층은 GeH4 유량, 압력, H2 dilution ratio를 변화시켜 제조하였으며 전기적, 광학적 특성을 비교하여 최종적으로 선택된 조건을 triple junction solar cell에 적용하였다. a-SiGe I층은 Ge contents가 증가함에 따라 band gap은 감소하고 45% 이상의 조건에서는 700nm 전후 파장의 투과율이 감소하며, 압력이 감소함에 따라 band gap은 소폭 감소하나 700nm 전후 파장의 투과율은 증가하였다. 그리고 H2 ratio가 증가함에 따라 band gap은 소폭 감소하나 투과율에는 큰 변화가 없었다. 상기 결과를 바탕으로 최종적으로 선택된 조건에서 triple-junction solar cell을 제작하여 평가한 결과 초기 변환효율 9%의 결과를 얻었다.

  • PDF

Influence of PECVD SiNx Layer on Multicrystalline Silicon Solar Cell (PECVD SiNx 박막의 다결정 실리콘 태양전지에 미치는 영향)

  • Kim, Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.662-666
    • /
    • 2005
  • Silicon nitride $(SiN_x)$ film is a promising material for anti-reflection coating and passivation of multicrystalline silicon (me-Si) solar cells. In this work, a plasma-enhanced chemical vapor deposition (PECVD) system with batch-type reactor tube was used to prepare highly robust $SiN_x$ films for screen-printed mc-Si solar cells. The Gas flow ratio, $R=[SiH_4]/[NH_3]$, in a mixture of silane and ammonia was varied in the range of 0.0910.235 while maintaining the total flow rate of the process gases to 4,200 sccm. The refractive index of the $SiN_x$ film deposited with a gas flow ratio of 0.091 was measured to be 2.03 and increased to 2.37 as the gas flow ratio increased to 0.235. The highest efficiency of the cell was $14.99\%$ when the flow rate of $SiH_4$ was 350 sccm (R=0.091). Generally, we observed that the efficiency of the mc-Si solar cell decreased with increasing R. From the analysis of the reflectance and the quantum efficiency of the cell, the decrease in the efficiency was shown to originate mainly from an increase in the surface reflectance for a high flow rate of $SiH_4$ during the deposition of $SiN_x$ films.

Simulated Optimum Substrate Thicknesses for the BC-BJ Si and GaAs Solar Cells

  • Choe, Kwang-Su
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.450-453
    • /
    • 2012
  • In crystalline solar cells, the substrate itself constitutes a large portion of the fabrication cost as it is derived from semiconductor ingots grown in costly high temperature processes. Thinner wafer substrates allow some cost saving as more wafers can be sliced from a given ingot, although technological limitations in slicing or sawing of wafers off an ingot, as well as the physical strength of the sliced wafers, put a lower limit on the substrate thickness. Complementary to these economical and techno-physical points of view, a device operation point of view of the substrate thickness would be useful. With this in mind, BC-BJ Si and GaAs solar cells are compared one to one by means of the Medici device simulation, with a particular emphasis on the substrate thickness. Under ideal conditions of 0.6 ${\mu}m$ photons entering the 10 ${\mu}m$-wide BC-BJ solar cells at the normal incident angle (${\theta}=90^{\circ}$), GaAs is about 2.3 times more efficient than Si in terms of peak cell power output: 42.3 $mW{\cdot}cm^{-2}$ vs. 18.2 $mW{\cdot}cm^{-2}$. This strong performance of GaAs, though only under ideal conditions, gives a strong indication that this material could stand competitively against Si, despite its known high material and process costs. Within the limitation of the minority carrier recombination lifetime value of $5{\times}10^{-5}$ sec used in the device simulation, the solar cell power is known to be only weakly dependent on the substrate thickness, particularly under about 100 ${\mu}m$, for both Si and GaAs. Though the optimum substrate thickness is about 100 ${\mu}m$ or less, the reduction in the power output is less than 10% from the peak values even when the substrate thickness is increased to 190 ${\mu}m$. Thus, for crystalline Si and GaAs with a relatively long recombination lifetime, extra efforts to be spent on thinning the substrate should be weighed against the expected actual gain in the solar cell output power.

A Brief Study on the Fabrication of III-V/Si Based Tandem Solar Cells

  • Panchanan, Swagata;Dutta, Subhajit;Mallem, Kumar;Sanyal, Simpy;Park, Jinjoo;Ju, Minkyu;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.109-118
    • /
    • 2018
  • Silicon (Si) solar cells are the most successful technology which are ruling the present photovoltaic (PV) market. In that essence, multijunction (MJ) solar cells provided a new path to improve the state-of-art efficiencies. There are so many hurdles to grow the MJ III-V materials on Si substrate as Si with other materials often demands similar qualities, so it is needed to realize the prospective of Si tandem solar cells. However, Si tandem solar cells with MJ III-V materials have shown the maximum efficiency of 30 %. This work reviews the development of the III-V/Si solar cells with the synopsis of various growth mechanisms i.e hetero-epitaxy, wafer bonding and mechanical stacking of III-V materials on Si substrate. Theoretical approaches to design efficient tandem cell with an analysis of state-of-art silicon solar cells, sensitivity, difficulties and their probable solutions are discussed in this work. An analytical model which yields the practical efficiency values to design the high efficiency III-V/Si solar cells is described briefly.

Electrical characteristics of Sn $O_{2}$Si heterojunction solar cells depending on annealing temperature (열처리온도에 따른 $SnO_2$/Si 이종접합 태양전지의 전기적 특성)

  • 이재형;박용관
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.481-489
    • /
    • 1994
  • The $SnO_2$/(n)Si solar cell was fabricated by electron beam evaporation method, and their properties were investigated. In proportion to increase of substrate and annealing temperature, the conductivity of $SnO_2$ thin film was increased, but its optical transmission decreases because of increasing optical absorption of free electrons in the thin film. $SnO_2$/Si Solar cell characteristics were improved by annealing, but the solar cells was deteriorated by heat treatment above 500[.deg. C]. The optimal outputs of $SnO_2$/Si solar cell through above investigations were $V_{\var}$:350[mV], $J_{sc}$ ;16.53[mA/c $m^{2}$], FF;0.41, .eta.=4.74[%]

  • PDF

Key Factors for the Development of Silicon Quantum Dot Solar Cell

  • Kim, Gyeong-Jung;Park, Jae-Hui;Hong, Seung-Hwi;Choe, Seok-Ho;Hwang, Hye-Hyeon;Jang, Jong-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.207-207
    • /
    • 2012
  • Si quantum dot (QD) imbedded in a $SiO_2$ matrix is a promising material for the next generation optoelectronic devices, such as solar cells and light emission diodes (LEDs). However, low conductivity of the Si quantum dot layer is a great hindrance for the performance of the Si QD-based optoelectronic devices. The effective doping of the Si QDs by semiconducting elements is one of the most important factors for the improvement of conductivity. High dielectric constant of the matrix material $SiO_2$ is an additional source of the low conductivity. Active doping of B was observed in nanometer silicon layers confined in $SiO_2$ layers by secondary ion mass spectrometry (SIMS) depth profiling analysis and confirmed by Hall effect measurements. The uniformly distributed boron atoms in the B-doped silicon layers of $[SiO_2(8nm)/B-doped\;Si(10nm)]_5$ films turned out to be segregated into the $Si/SiO_2$ interfaces and the Si bulk, forming a distinct bimodal distribution by annealing at high temperature. B atoms in the Si layers were found to preferentially substitute inactive three-fold Si atoms in the grain boundaries and then substitute the four-fold Si atoms to achieve electrically active doping. As a result, active doping of B is initiated at high doping concentrations above $1.1{\times}10^{20}atoms/cm^3$ and high active doping of $3{\times}10^{20}atoms/cm^3$ could be achieved. The active doping in ultra-thin Si layers were implemented to silicon quantum dots (QDs) to realize a Si QD solar cell. A high energy conversion efficiency of 13.4% was realized from a p-type Si QD solar cell with B concentration of $4{\times}1^{20}atoms/cm^3$. We will present the diffusion behaviors of the various dopants in silicon nanostructures and the performance of the Si quantum dot solar cell with the optimized structures.

  • PDF

Influence of the Thickness and Doping Concentration in p- and n-Type Poly-Si Layers on the Efficiency of a Solar Cell Based on a Carbon Fiber

  • Yoon, Min-Seok;Shim, Young Bo;Han, Young-Geun
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.199-205
    • /
    • 2015
  • We investigated the effects of the thickness and doping concentration in p- and n-type poly-Si layers on the performance of a solar cell based on a carbon fiber in order to improve the energy conversion efficiency of the cell. The short-circuit current density and open-circuit voltage of the carbon fiber-based solar cell were significantly influenced by the thickness and doping concentration in the p- and n-type poly-Si layers. The solar cell efficiency was successfully enhanced to ~10.5%.