• Title/Summary/Keyword: a virtual plant

Search Result 171, Processing Time 0.062 seconds

Telerobot control based on 3-D graphics (3차원 그래픽을 이용한 원격로보트 제어)

  • 김창회;황석용;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1527-1530
    • /
    • 1996
  • Telerobot system is being developed for the application to nuclear power plants by Korea Atomic Energy Research Institute. Human-machine interaction and interface are very important elements of telerobotic systems. The main purpose of this study is developing a control system based on 3-D graphic techniques for the easy user interface and realistic visual I information supply. This system possesses the abilities for (1) virtual work, environment modelling and simulation, (2) kinematic animation include redundant behavior (3) interfacing with a real robot system, (4) transformation between real and virtual mode within the same graphics system. This system is especially focused on enhancing the overall efficiency and reliably of nozzle dam installation task inside water chamber of steam generator in nuclear power plant.

  • PDF

The Application of Boiler Digital Control System 3D MMI Using Virtual Real (보일러 분산제어 시스템 3차원 MMI 구현)

  • Oh, Young-Il;Kim, Eung-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.880-882
    • /
    • 1999
  • Virtual Reality is a set of computer technologies which, when combined, provide an interface to a computer-generated world, and in particular, provide such a convincing interface that the user believes he is actually in a three dimensional computer-generated world. This computer generated world may be a model of a real-world object, such as a house; it might be an world that does not exist in a real sense but is understood by humans, such as a chemical molecule or a representation of a set of data; or it might be in a completely imaginary science fiction world. this paper describes the application of boiler digital control system MMI for power plant using virtual reality

  • PDF

Evaluation of Dynamic Characteristics for a Submerged Body with Large Angle of Attack Motion via CFD Analysis

  • Jeon, Myungjun;Mai, Thi Loan;Yoon, Hyeon Kyu;Ryu, Jaekwan;Lee, Wonhee;Ku, Pyungmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.313-326
    • /
    • 2021
  • A submerged body with varied control inputs can execute large drift angles and large angles of attack, as well as basic control such as straight movement and turning. The objective of this study is to analyze the dynamic characteristics of a submerged body comprising six thrusters and six control planes, which is capable of a large drift angle and angle of attack motion. Virtual captive model tests via were analyzed via computational fluid dynamics (CFD) to determine the dynamic characteristics of the submerged body. A test matrix of virtual captive model tests specialized for large-angle motion was established. Based on this test matrix, virtual captive model tests were performed with a drift angle and angle of attack of approximately 30° and 90°, respectively. The characteristics of the hydrodynamic force acting on the horizontal and vertical surfaces of the submerged body were analyzed under the large-angle motion condition, and a model representing this hydrodynamic force was established. In addition, maneuvering simulation was performed to evaluate the standard maneuverability and dynamic characteristics of large-angle motion. Considering the shape characteristics of the submerged body, we attempt to verify the feasibility of the analysis results by analyzing the characteristics of the hydrodynamic force when the large-angle motion occurred.

Rotor Speed-based Droop of a Wind Generator in a Wind Power Plant for the Virtual Inertial Control

  • Lee, Jinsik;Kim, Jinho;Kim, Yeon-Hee;Chun, Yeong-Han;Lee, Sang Ho;Seok, Jul-Ki;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1021-1028
    • /
    • 2013
  • The frequency of a power system should be kept within limits to produce high-quality electricity. For a power system with a high penetration of wind generators (WGs), difficulties might arise in maintaining the frequency, because modern variable speed WGs operate based on the maximum power point tracking control scheme. On the other hand, the wind speed that arrives at a downstream WG is decreased after having passed one WG due to the wake effect. The rotor speed of each WG may be different from others. This paper proposes an algorithm for assigning the droop of each WG in a wind power plant (WPP) based on the rotor speed for the virtual inertial control considering the wake effect. It assumes that each WG in the WPP has two auxiliary loops for the virtual inertial control, i.e. the frequency deviation loop and the rate of change of frequency (ROCOF) loop. To release more kinetic energy, the proposed algorithm assigns the droop of each WG, which is the gain of the frequency deviation loop, depending on the rotor speed of each WG, while the gains for the ROCOF loop of all WGs are set to be equal. The performance of the algorithm is investigated for a model system with five synchronous generators and a WPP, which consists of 15 doubly-fed induction generators, by varying the wind direction as well as the wind speed. The results clearly indicate that the algorithm successfully reduces the frequency nadir as a WG with high wind speed releases more kinetic energy for the virtual inertial control. The algorithm might help maximize the contribution of the WPP to the frequency support.

Development on AR-Based Operator Training Simulator(OTS) for Chemical Process Capable of Multi-Collaboration (다중협업이 가능한 AR 기반 화학공정 운전원 교육 시뮬레이터(OTS-Simulator) 개발)

  • Lee, Jun-Seo;Ma, Byung-Chol;An, Su-Bin
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.22-30
    • /
    • 2022
  • In order to prevent chemical accidents caused by human error, a chemical accident prevention and response training program using advanced technology was developed. After designing a virtual process based on the previously built pilot plant, chemical accident response contents were developed. A part of the pilot facility was remodeled for content realization and a remote control function was given. In addition, a DCS program that can control facilities in a virtual environment was developed, and chemical process operator training (OTS) that can finally respond to virtual chemical accidents was developed in conjunction with AR. Through this, trainees can build driving skills by directly operating the device, and by responding to virtual chemical accidents, they can develop emergency response capabilities. If the next-generation OTS like this study is widely distributed in the chemical industry, it is expected to greatly contribute to the prevention of chemical accidents caused by human error.

Managing and Minimizing Cost of Energy in Virtual Power Plants in the Presence of Plug-in Hybrid Electric Vehicles Considering Demand Response Program

  • Barati, Hassan;Ashir, Farshid
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.568-579
    • /
    • 2018
  • Virtual power plants can be regarded as systems that have entered the network after restructure of power systems. In fact, these plants are a set of consumers capable of consuming and generating power. In response to widespread implementation of plug-in hybrid electric vehicles, further investigation of energy management in this type of power plants seems to be of great value. In effect, these vehicles are able to receive and inject power from/into the network. Hence, study of the effects of these vehicles on management of virtual power plants seems to be illuminative. In this paper, management of power consumption/generation in virtual power plants has been investigated in the presence of hybrid electric vehicles. The objective function of virtual power plants problem management is to minimize the overall costs including not only the costs of energy production in power generation units, fuels, and degradation of batteries of vehicles, but also the costs of purchasing electricity from the network. Furthermore, the constraints on the operational of plants, loads and hybrid vehicles, level of penalty for greenhouse gas emissions ($CO_2$ and $NO_x$) produced by power plants and vehicles, and demand response to the immediate price of market have all been attended to in the present study. GAMS/Cplex software system and sample power system have been employed to pursue computer implementation and simulation.

Cost comparison of pretreatment processes in large SWRO desalination plant (대규모 해수담수화 플랜트에서의 전처리공정 비용 분석)

  • Kim, Youngmin;Kim, Jin-Ho;Lee, Sangho;Lee, Chang-Kyu;Park, Kwang Duk;Choi, June-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.555-560
    • /
    • 2013
  • A cost analysis method for pretreament processes of a large scale seawater desalination plant was considered using a cost estimation model, WaTER (Water Treatment Estimation Routine). This model is based on cost functions of U.S. EPA to conduct economic analysis of water treatment facilities. A virtual seawater desalination plant which has pretreatment production capacity of $100,000m^3$ per day was chosen as a model plant. Dual media filtration and microfiltration systems were compared as pretreatment process, and the following reverse osmosis process was modeled. As a result, microfiltration showed a price competitiveness in condition of operating with reverse osmosis process by reducing the loads of water treatment and membrane cleaning despite it's high annual cost.

A Study on Remote Teaching System for Nuclear Power Plant Using VR Technology (가상현실기술을 이용한 원자력발전소 원격교육 시스템 개발에 관한 연구)

  • Lee, Myeong-Soo;Hong, Jin-Hyuk;Park, Sin-Yeol;Lee, Yong-Kwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.259-262
    • /
    • 2002
  • 원자력 발전소는 발전소 안전과 방사선 안전등의 이유로 해서 복잡한 건물 및 기기들로 이루어져 있다. 특히 고 방사성 물질들을 함유하고 있는 1 차계통(NSSS System) 기기들은 평상 운전시 뿐 아니라 정기보수(O/H) 기간 중에도 고 방사능 지역에 위치하여 운전원의 접근이 어려운 지역이다. 본 고에서는 이러한 접근 제약성을 극복할 수 있는 교육시스템으로서 전력연구원에서 개발한 울진 표준형원전 가상현실 교육훈련 지원시스템(KSNP VRCATS)의 일환으로 가상 공간에 구현된 가상발전소(Virtual Plant)와 각종 기기 구조물, 가상 주제어실(Virtual MCR)의 개발 내용 및 특징을 기술하였다.

  • PDF

Model Based Hardware In the Loop Simulation of Thermal Management System for Performance Analysis of Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지 특성 해석을 위한 열관리 계통 모델 기반 HILS 기초 연구)

  • Yun, Jin-Won;Han, Jae-Young;Kim, Kyung-Taek;Yu, Sang-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • A thermal management system of a proton exchange membrane fuel cell is taken charge of controlling the temperature of fuel cell stack by rejection of electrochemically reacted heat. Two major components of thermal management system are heat exchanger and pump which determines required amount of heat. Since the performance and durability of PEMFC system is sensitive to the operating temperature and temperature distribution inside the stack, it is necessary to control the thermal management system properly under guidance of operating strategy. The control study of the thermal management system is able to be boosted up with hardware in the loop simulation which directly connects the plant simulation with real hardware components. In this study, the plant simulation of fuel cell stack has been developed and the simulation model is connected with virtual data acquisition system. And HIL simulator has been developed to control the coolant supply system for the study of PEMFC thermal management system. The virtual data acquisition system and the HIL simulator are developed under LabVIEWTM Platform and the Simulation interface toolkit integrates the fuel cell plant simulator with the virtual DAQ display and HIL simulator.

The Case of Novel Attack Detection using Virtual Honeynet (Virtual Honeynet을 이용한 신종공격 탐지 사례)

  • Kim, Chun-Suk;Kang, Dae-Kwon;Euom, Ieck-Chae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.2
    • /
    • pp.279-285
    • /
    • 2012
  • Most national critical key infrastructure, such like electricity, nuclear power plant, and petroleum is run on SCADA (Supervisory Control And Data Acquisition) system as the closed network type. These systems have treated the open protocols like TCP/IP, and the commercial operating system, which due to gradually increasing dependence on IT(Information Technology) is a trend. Recently, concerns have been raised about the possibility of these facilities being attacked by cyber terrorists, hacking, or viruses. In this paper, the method to minimize threats and vulnerabilities is proposed, with the virtual honeynet system architecture and the attack detection algorithm, which can detect the unknown attack patterns of Zero-Day Attack are reviewed.