• Title/Summary/Keyword: a tracker

Search Result 525, Processing Time 0.033 seconds

Stress Analysis on a Structure of Solar Tracker Subjected to Wind Load (풍하중을 받는 태양광 추적 구조물의 응력해석)

  • Kim, Yong-Woo;Kim, Won-Bong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.747-754
    • /
    • 2012
  • A solar power generator is usually installed outdoors and it is exposed to extreme environments such as snow weight and wind loading. The solar tracker structure should be designed to have sufficient stiffness and strength against such loads. In this paper, simulations are performed by varying the parameters such as wind directions, wind speeds and the pose of the solar panel to evaluate the effects of extreme wind on solar tracker. As the effects of wind load, maximum displacement and maximum equivalent stress in the solar tracker are calculated. Finite element stress analysis is carried out by using the pressure distribution that is obtained by prior wind load analysis due to the flow around the solar tracker. The stress analysis of solar tracker to check and/or improve structural robustness provides some useful instructions for structural design or revision of solar tracker.

Development of a Target Tracker using Phase Correlation (Phase Correlation을 이용한 표적 추적기 개발)

  • Jin, Sang-Hun;Suk, Jung-Youp
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.165-168
    • /
    • 2004
  • This paper propose a target tracker using phase correlation. The tracker consist of a pre-processing module, a translation estimation module based on phase correlation, a fine motion estimation module applied when confidence rate could not fulfill a threshold value and a reference image update module. The fine motion estimation module measure the shift, rotation and scale of input image compared to reference using Fourier-Mellin transform. Proposed tracker was tested its accuracy and robustness using some real indoor and outdoor image sequences.

  • PDF

Visual Tracking using Weighted Discriminative Correlation Filter

  • Song, Tae-Eun;Jang, Kyung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.49-57
    • /
    • 2016
  • In this paper, we propose the novel tracking method which uses the weighted discriminative correlation filter (DCF). We also propose the PSPR instead of conventional PSR as tracker performance evaluation method. The proposed tracking method uses multiple DCF to estimates the target position. In addition, our proposed method reflects more weights on the correlation response of the tracker which is expected to have more performance using PSPR. While existing multi-DCF-based tracker calculates the final correlation response by directly summing correlation responses from each tracker, the proposed method acquires the final correlation response by weighted combining of correlation responses from the selected trackers robust to given environment. Accordingly, the proposed method can provide high performance tracking in various and complex background compared to multi-DCF based tracker. Through a series of tracking experiments for various video data, the presented method showed better performance than a single feature-based tracker and also than a multi-DCF based tracker.

Real-Time Apartment Building Detection and Tracking with AdaBoost Procedure and Motion-Adjusted Tracker

  • Hu, Yi;Jang, Dae-Sik;Park, Jeong-Ho;Cho, Seong-Ik;Lee, Chang-Woo
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.338-340
    • /
    • 2008
  • In this letter, we propose a novel approach to detecting and tracking apartment buildings for the development of a video-based navigation system that provides augmented reality representation of guidance information on live video sequences. For this, we propose a building detector and tracker. The detector is based on the AdaBoost classifier followed by hierarchical clustering. The classifier uses modified Haar-like features as the primitives. The tracker is a motion-adjusted tracker based on pyramid implementation of the Lukas-Kanade tracker, which periodically confirms and consistently adjusts the tracking region. Experiments show that the proposed approach yields robust and reliable results and is far superior to conventional approaches.

  • PDF

SELECTION OF DESIGN PARAMETERS IN OPTICAL SYSTEM OF STAR TRACKER FOR A SATELLITE (위성용 STAR TRACKER 광학계의 설계요소 선정)

  • Nah, Ja-Kyung;Kim, Yong-Ha;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.273-284
    • /
    • 1999
  • In order to develop star trackers for a satellite in our country we studies selection procedure of optical parameters. For logical selection of the optical parameters, we simulated the entire processes in which star lights imaged on a CCD sensor were read into and processed in an associated electronics. The simulation resulted in relations between star's magnitude and achievable pointing accuracy, from which we derived optimal optical parameters to satisfy a required pointing accuracy of a star tracker. The selected optical parameters were used in an optical system design of a star tracker with a pointing accuracy of 10 arcsec.

  • PDF

Robust Tracker Design Method Based on Multi-Trajectories of Aircraft

  • Kim, Eung-Tai;Andrisani, D. II
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.39-49
    • /
    • 2002
  • This paper presents a robust tracker design method that is specific to the trajectories of target aircraft. This method assumes that representative trajectories of the target aircraft are available. The exact trajectories known to the tracker enables the incorporation of the exact data in the tracker design instead of the measurement data. An estimator is designed to have acceptable performance in tracking a finite number of different target trajectories with a capability to trade off the mean and maximum errors between the exact trajectories and the estimated or predicted trajectories. Constant estimator gains that minimize the cost functions related to the estimation or prediction error are computed off-line from an iterative algorithm. This tracker design method is applied to the longitudinal motion tracking of target aircraft.

Visual Object Tracking Fusing CNN and Color Histogram based Tracker and Depth Estimation for Automatic Immersive Audio Mixing

  • Park, Sung-Jun;Islam, Md. Mahbubul;Baek, Joong-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1121-1141
    • /
    • 2020
  • We propose a robust visual object tracking algorithm fusing a convolutional neural network tracker trained offline from a large number of video repositories and a color histogram based tracker to track objects for mixing immersive audio. Our algorithm addresses the problem of occlusion and large movements of the CNN based GOTURN generic object tracker. The key idea is the offline training of a binary classifier with the color histogram similarity values estimated via both trackers used in this method to opt appropriate tracker for target tracking and update both trackers with the predicted bounding box position of the target to continue tracking. Furthermore, a histogram similarity constraint is applied before updating the trackers to maximize the tracking accuracy. Finally, we compute the depth(z) of the target object by one of the prominent unsupervised monocular depth estimation algorithms to ensure the necessary 3D position of the tracked object to mix the immersive audio into that object. Our proposed algorithm demonstrates about 2% improved accuracy over the outperforming GOTURN algorithm in the existing VOT2014 tracking benchmark. Additionally, our tracker also works well to track multiple objects utilizing the concept of single object tracker but no demonstrations on any MOT benchmark.

Adaptive ${\alpha}-{\beta}$ Tracker for TWS Radar System

  • Kim, Byung-Doo;Lee, Ja-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.506-509
    • /
    • 2005
  • An adaptive ${\alpha}-{\beta}$ tracker is proposed for tracking maneuvering targets with a track-while-scan radar system. The tracker gain is updated on-line corresponding to the adjusted process noise variance which is obtained via time averaging of the process over a sliding window. The adjusted process noise variance is used to compute the maneuverability index for the tracker gain based on the steady-state Kalman filter equation for each epoch. It is shown via simulation that the proposed approach provides robust and accurate position estimates during the target maneuver while the performance of the conventional ${\alpha}-{\beta}$ tracker is shown much degraded.

  • PDF

Precision Attitude Determination Design Using Tracker

  • Rhee, Seung-Wu;Kim, Zeen-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.53-57
    • /
    • 1998
  • Star tracker placement configuration is proposed and the properness of the placement configuration is verified for star tracker's sun avoidance angle requirement. Precision attitude determination system is successfully designed using a gyro-star tracker inertial reference system for a candidate LEO spacecraft. Elaborate kalman filter formulation for a spacecraft is proposed for covariance analysis. The covariance analysis is performed to verify the capability of the proposed attitude determination system. The analysis results show that the attitude determination error and drift rate error are good enough to satisfy the mission of a candidate spacecraft.

  • PDF

On the user equipment (UE) side time tracker design and implementation of the WCDMA system (WCDMA 시스템의 단말기측 time tracker 설계 및 구현)

  • Yeh, Choong-Il;Chang, Kyung-Hi;Kim, Hwan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2A
    • /
    • pp.96-101
    • /
    • 2003
  • This paper is on the user equipment (UE) side time tracker design and implementation of the wideband code division multiple access (WCDMA) system. The time tracker is constructed as a second order closed loop including time error detector (TED), loop filter (LP), numerically controlled oscillator (NCO), and sample selector (SS). Through the simulation, we found the gain of the TED as a function of the CPICH power contribution to the total transmission power of the base station. Also we derived the transfer function of the loop and the BER versus DPCH power relationships where timing offsets and loop noise bandwidths are used as parameters. In the curve, we can conclude that there are appropriate loop noise bandwidths according to the given environments for the better performance.