• 제목/요약/키워드: a teleoperation

검색결과 189건 처리시간 0.065초

스마트폰 가속도 센서 기반의 제스처 인식과 로봇 응용 (Smartphone Accelerometer-Based Gesture Recognition and its Robotic Application)

  • 남상하;김주희;허세경;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권6호
    • /
    • pp.395-402
    • /
    • 2013
  • 본 논문에서는 스마트폰 사용자를 위한 가속도 센서 기반의 제스처 인식 방법을 제안한다. 제안하는 제스처 인식 방법에서는 DTW 알고리즘을 적용하여 새로운 시계열 가속도 데이터와 각 제스처별 대표 훈련 데이터간의 유사도를 측정한 뒤, k-NN 알고리즘을 적용하여 제스처를 판별한다. 본 논문에서 제안하는 제스처 인식 방법의 성능을 분석해보기 위해, 안드로이드 스마트폰에서 동작하는 제스처 인식 프로그램과 이것을 활용한 제스처 기반 원격 제어 로봇 시스템을 구현하였다. 사용자-혼합 및 사용자-독립 실험들을 통해, 본 논문에서 제안한 제스처 인식방법과 구현 시스템이 높은 인식 성능과 확장성을 가진다는 것을 보였다.

의료용 햅틱 마스터-슬레이브 로봇 시스템 : 실험적 성능 평가 (A Haptic Master-slave Robot System : Experimental Performance Evaluation for Medical Application)

  • 오종석;신원기;프엉박;엄창호;최승복
    • 한국소음진동공학회논문집
    • /
    • 제23권1호
    • /
    • pp.41-48
    • /
    • 2013
  • In this work, 4-DOF ER haptic master is proposed and integrated with a slave robot for minimally invasive surgery(MIS). Using a controllable ER fluid, the haptic master can generate a repulsive force/torque with the 4-DOF motion. For realization of master-slave robot system, the motion command of the haptic master is realized by slave surgery robot. In order to follow the 4-DOF motion of the haptic master, novel mechanism of slave surgery robot with gimbal joint is devised. Accordingly, the haptic master-slave robot system is established by incorporating the slave robot with the haptic master device in which the desired repulsive force/torque and position are transferred to each other via wireless communications. In order to obtain the desired force/torque and position trajectories, tracking controllers for haptic master and slave robot are designed and implemented, respectively. It has been demonstrated that the desired effective torque tracking control performance is well achieved using the proposed haptic master-slave robot system.

골절 수술용 엑스레이 투과 원격조종 스튜어트 플랫폼의 설계 및 제어 (Design and Control of X-ray Permeable Teleoperated Stewart Platform for Fracture Surgery)

  • 유병준;김혜미;이성학;임순호;박태곤;이치범
    • 한국생산제조학회지
    • /
    • 제24권6호
    • /
    • pp.660-666
    • /
    • 2015
  • To avoid radiation exposure from repeated x-rays taken during orthopedic surgery, an x-ray permeable teleoperated Stewart platform for orthopedic fracture surgery was developed. This system is composed of a user interface device and a teleoperated operational robot, both of which use a Stewart platform mechanism. The links of the operational robot are made from an x-ray permeable material, polycarbonate, to minimize the interference. The forward and inverse kinematics algorithm applied and the structural reliability were both verified through an analysis using commercial engineering software. To monitor the operating status in real time and stop the device during an emergency, a monitoring software was developed. The performance of the x-ray permeable teleoperated Steward platform was validated experimentally.

의료용 햅틱 마스터-슬레이브 로봇 시스템 : 실험적 성능 평가 (A Haptic Master-Slave Robot System : Experimental Performance Evaluation for Medical Application)

  • 오종석;신원기;프엉박;엄창호;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.421-427
    • /
    • 2012
  • In this work, 4 DOF ER haptic master is proposed and integrated with a slave robot for minimally invasive surgery (MIS). Using a controllable ER fluid, the haptic master can generate a repulsive force/torque with the 4-DOF motion. For realization of master-slave robot system, the motion command of the haptic master is realized by slave surgery robot. In order to follow the 4 DOF motion of the haptic master, novel mechanism of slave surgery robot with gimbal joint is devised. Accordingly, the haptic master-slave robot system is established by incorporating the slave robot with the haptic master device in which the desired repulsive force/torque and position are transferred to each other via wireless communications. In order to obtain the desired force/torque and position trajectories, tracking controllers for haptic master and slave robot are designed and implemented, respectively. It has been demonstrated that the desired effective torque tracking control performance is well achieved using the proposed haptic master-slave robot system.

  • PDF

인터넷기반의 풍력발전기 원격제어와 모니터링에 관한 연구 (A Study on the Remote Control & Monitoring System for Wind Turbine System via Internet)

  • 박장훈;채정수;문성룡;정준익;이호순;노도환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1395-1397
    • /
    • 2003
  • This paper is concerned with a client-server architecture for the remote control of wind turbine system over the internet network. Recently the development of internet are study in remote area machine control, observation, remote control (teleoperation) automation industrial system in several fields. One of the important problems which should be solved in the remote control is an irregular time delay problem. This research practiced emergency system on-off experiment to Internet. Finally, we apply it to a wind turbine system that consists of a remote control and network via internet. It is experimented that real time of internet remote control and stability of wind turbine system.

  • PDF

산업용 로봇 팔 제어를 위한 마스터 암 설계 및 제어 (Design and Control of the Master Arm for Control of Industrial Robot Arm)

  • 지대형;전지혜;강현승;최형식
    • 한국정밀공학회지
    • /
    • 제32권12호
    • /
    • pp.1055-1063
    • /
    • 2015
  • In this paper, a new master arm was developed as an input device of the remote control system for easy control of the industrial robot arm; it has a structure similar to the robot arm and is easy to wear. For control of the slave arm, related equations were derived about the joints between the master and slave arm; and thereby using them, the master arm control system was developed. Furthermore, a control simulator was developed for the convenient and accurate control of the slave arm. Experiments, about controlling the slave arm in applying the master arm, were performed to validate the developed simulator and the derived related equations.

원격 제어되는 볼팅 로봇을 위한 마스터암과 제어 시스템 (Master Arm and Control System for Teleoperated Bolting Robot)

  • 이상우;박장우;박신석
    • 한국정밀공학회지
    • /
    • 제30권2호
    • /
    • pp.185-193
    • /
    • 2013
  • The construction automation provides safer and more productive working environment of construction site. We developed the automation system of bolting operation for high-rise building in the previous research. However, this system has a weak point that the operation has to be processed in the air with the operator in the cabin. This weakness leads operators to considerably dangerous environment. Therefore, we proposed the tele-operation system in order to supplement this weak point. Furthermore, it leads more effective operation by application of more intuitive controller; spherical coordinate based Master Arm than the joystick in the Mobile Bolting Robot system. These proposed system and controller were evaluated based on Fitts' law paradigm, which is a general estimation method of speed accuracy of task. Through the experimental results, new developed tele-operation system is compared with the actual operation and it discloses distinctions between two systems. As a result, it is found that new developed teleoperation system can be possible to replace the operation in the cabin.

Development of simulation systems for telemanipulators in confined cell facilities

  • Yu, Seungnam;Ryu, Dongsuk;Han, Jonghui;Lee, Jongkwang;Lee, Hyojik;Park, Byungsuk
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.429-447
    • /
    • 2020
  • The considered simulation tasks are based on an electrometallurgical process development strategy and associated telemanipulator simulation systems are proposed with various scales of experimental facilities. Fundamentally, target facilities are assumed to be operated only by remote handling systems because the considered process is operated in hazardous environments. Futhermore, the feasibility at various scales should be experimentally verified with gradual increase in throughput. In this regard, bench, engineering, and pilot-scale simulation systems are important early-stage tools for assessing the practical operability of the target process with the material handling systems. Such simulation systems are highly customized for applications and are a precursor to larger pilot and demonstration-scale plants. This paper introduced and classified the developed simulator systems for this approach at various scales using remote handling systems which were assembled inside a virtual target facility, and the manmachine interface was included for a more realistic operation of the simulator. The results obtained for each simulator show the feasibility and requirement for improvement of the systems for the considered test issues with respect to the operation and maintenance of the process.

가정 자로법에 의한 전자기 흡입력의 촉각궤환장치의 최적설계 (An Optimum Design of the Tactile Feedback Device using the Electromagnetic Attractive Force by the Probable Flux Paths Method)

  • 이정훈;장건희;최동훈;박종오;이종원
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.464-478
    • /
    • 1998
  • In teleoperation, it is important for an operator to feel as if he really were in a distant place. To realize this objective, the various information from a remote site must be presented to the operator. Even though tactile information is very important to efficiently execute a task, it is not yet sufficiently provided for the operator. In this paper, we propose the new mechanism that can provide the more dexterous tactile information to the operator This device utilizing the electromagnetic force is designed to be compact and light enough to be attached to the fingerpad, and designed to be controlled continuously. The magnetic circuit is derived by the probable flux paths method in order to take forces at any given dimension. An optimization technique is also proposed to maximize the tactile force that humans can perceive under the same conditions. The objective function is formulated as maximizing displacements indented on the fingerpad, considering the mechanism of human tactile perception. The optimization formulation is subject to the geometric and rising temperature constraints in the coil. It is demonstrated that, by optimization, the tactile force increases by 24%, compared with that obtained from the initial design.

  • PDF

최소침습수술용 로봇의 안전성을 위한 제어 및 HMI 개발 (Development of Control and HMI for Safe Robot Assisted Minimally Invasive Surgery)

  • 정회주;송현종;박장우;박신석
    • 한국정밀공학회지
    • /
    • 제28권9호
    • /
    • pp.1048-1053
    • /
    • 2011
  • Recently, robots have been used in surgical area. Robotic surgery in Minimally Invasive Surgery gives many advantages to surgeons and patients both. This study introduce a robotic assistant to improve the safety of telerobotic Minimally Invasive Surgical procedures. The master-slave system is applied to the telerobotic surgical system with the master arm, which control the system, and slave robot which operates the surgery on the patient body. By using a 3-DOF master arm, the surgeon can control the 6-DOF surgical robot under the constraint of fulcrum point. This paper explains the telerobotic surgical system and confirms the system with the precision of the robot control related to the fulcrum point to enhance the safety.