• Title/Summary/Keyword: a single cycle property

Search Result 31, Processing Time 0.042 seconds

Switched-voltage control of electrostatic suspension system

  • Woo, Shao-Ju;Jeon, Jong-Up;Higuchi, Toshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.401-404
    • /
    • 1996
  • A new method for the electrostatic suspension of disk-shaped objects is proposed which is based on a switched-voltage control scheme. It operates according to a relay feedback control and deploys only a single high-voltage power supply capable of delivering a dc voltage of positive and/or negative polarity. In addition to the unique feature that no high-voltage amplifiers are needed, this method provides a remarkable system simplification relative to conventional methods. It is shown that despite the inherent limit cycle property of relay feedback based control, an excellent performance in vibration suppression is attained due to the presence of a relatively large squeeze film damping. In this paper, the functional principle of the switched voltage control scheme, numerical analysis, stator electrode design, and a nonlinear dynamic model of the suspension system are described. Experimental results will be presented for a 4-inch silicon wafer that clearly reveal the capability of the proposed control structure to suspend the wafer stably at an airgap length of 50 .mu.m.

  • PDF

Electrostatic Suspension System of Silicon Wafer using Relay Feedback Control (릴레이 제어법을 이용한 실리콘 웨이퍼의 정전부상에 관한 연구)

  • 전종업;이상욱;정일진;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.969-974
    • /
    • 2003
  • A simple and cost-effective method for the electrostatic suspension of thin plates like silicon wafers is proposed which is based on a switched voltage control scheme. It operates according to a relay feedback control and deploys only a single high-voltage power supply that can deliver a dc voltage of positive and/or negative polarity. This method possesses the unique feature that no high-voltage amplifiers are needed which leads to a remarkable system simplification relative to conventional methods. It is shown that despite the inherent limit cycle property of the relay feedback based control, an excellent performance in vibration suppression is attained due to the presence of a relatively large squeeze film damping origination from the air between the electrodes and levitated object. Using this scheme, a 4-inch silicon wafer was levitated stably with airgap variation decreasing down to 1 $\mu\textrm{m}$ at an airgap of 100 $\mu\textrm{m}$

  • PDF

Electrostatic Suspension System of Silicon Wafer using Relay Feedback Control (릴레이 제어법을 이용한 실리콘 웨이퍼의 정전부상에 관한 연구)

  • Lee, Sang-Uk;Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.56-64
    • /
    • 2005
  • A simple and cost-effective method for the electrostatic suspension of thin plates like silicon wafers is proposed which is based on a switched voltage control scheme. It operates according to a relay feedback control and deploys only a single high-voltage power supply that can deliver a DC voltage of positive and/or negative polarity. This method possesses the unique feature that no high-voltage amplifiers are needed which leads to a remarkable system simplification relative to conventional methods. It is shown that despite the inherent limit cycle property of the relay feedback based control, an excellent performance in vibration suppression is attained due to the presence of a relatively large squeeze film damping origination from the air between the electrodes and levitated object. Using this scheme, a 4-inch silicon wafer was levitated stably with airgap variation decreasing down to $1 {\mu}m$ at an airgap of $100{\mu}m$.

Changes in Material Properties of Used Gas Turbine Blade Made of Single- Crystal Superalloy (가스터빈 단결정 블레이드 사용품의 특성변화)

  • Yoo, Keun-Bong;Lee, Han-Sang;Song, Gyu-So;Lee, Kyu-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1909-1915
    • /
    • 2010
  • The material properties of gas turbine components change during the daily start/stop thermal cycle because of exposure to the hot combustion gas. Recently, single-crystal Ni-based superalloys have been used to manufacture many hot-gas components for gas turbines. However, the user needs to depend on the manufacturer for maintenance issues because of the lack of data required for predicting blade life and material degradation. In this study, we investigate the time-dependent degradation of first-stage blades at various operating facilities to collect the basic data for life assessment and damage analysis. The blade material is a single-crystal Ni-based superalloy, CMSX-4, and the EOH (equivalent operating hours) are 25,000 and 52,000, respectively. We prepared the test specimen directly from used blades and carried out mechanical tests and microstructural observations.

A study on the Control Method of Single-Phase APF Using RRF Method (회전좌표계를 이용한 단상능동전력필터의 제어방법에 관한 연구)

  • 김영조;허진석;김영석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.576-584
    • /
    • 2003
  • This paper presents a new control method of single-phase active power filter(APF) for the compensation of harmonic current components in nonlinear loads. Constructing a imaginary second-phase giving time delay to load currents, making single-phase system into the system that has two phases, complex calculation is possible. In the previous method, it made a imaginary-phase lagged to the load current T/4(here T is the fundamental cycle), but in proposed method, the new signal, which has the delayed phase through the filter, using the phase-delay property of low-pass filter, was used to the second phase. Instantaneous calculation of harmonic current is possible, because two phase have different phase. In this paper, it was done with instantaneous calculation using the rotating reference frames(RRF) that synchronizes with source-frequency, a reference of compensation currents, not applying to instantaneous reactive power theory which uses the existed fixed reference frames. The simulation and experiment about R-L loads using the current source were carried out, and the effect of the proposed method was preyed through the result of this experiment.

A Study on Quality Classification of Injection Molding Process by Kalman Filter (Kalman Filter를 이용한 사출성형 제품의 품질 분류에 대한 연구)

  • Shin, Bong Deug;Oh, Hyuk Jun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.12
    • /
    • pp.635-640
    • /
    • 2016
  • It is important factors for a production system to get a profitable result in quality and reliability process. For this reason, there's are various type of research papers in a certain type of data acquisition and application to reliability and quality of the level of M2M devices. In general, a classification problem of slightly different signal such as sensing data is difficult to do with classical statistical methods. There's required real-time and instantaneous calculation properties in machine process. Especially a type of injection molding machine which has a property to be decided in accordance with short-term cycle process needs a solution that can be done a certain type of decision like as good or bad quality immediately. This paper presents a simple application of Kalman Filtering by single sensing data to injection molding process in order to get a correct answer from the real time sensing data.

Electrostatic Suspension System of Flexible Objects using Relay Feedback Control (릴레이 제어법을 이용한 유연 판상체의 정전부상에 관한 연구)

  • Jeon Jong-Up;Kim Sun-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.104-110
    • /
    • 2006
  • A design and control of electrostatic suspension system for flexible objects is presented. A number of electrode pairs of which the number depends on the object flexibility are positioned above the object and the voltages applied to each electrode pair are controlled, independently on the others, on the basis of the gap length. To implement the system with low cost and compactness, switched-voltage control scheme that is based on the relay feedback control is utilized. Relay feedback control method deploys only a single high-voltage power supply that can deliver a DC voltage of positive and/or negative polarity and thus high voltage amplifiers that are costly and bulky are not needed any more. It is shown that despite the inherent limit cycle property of the relay feedback based control, an excellent performance in vibration suppression is attained due to the presence of a relatively large squeeze film damping originating from the electrodes and levitated object. Employing fourteen electrode pairs, a thin aluminum plate with a thickness of 0.1 mm has been suspended at a gap length of 0.75mm.

Application of first-order reliability method in seismic loss assessment of structures with Endurance Time analysis

  • Basim, Mohammad Ch.;Estekanchi, Homayoon E.;Mahsuli, Mojtaba
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.437-447
    • /
    • 2018
  • Computational cost is one of the major obstacles for detailed risk analysis of structures. This paper puts forward a methodology for efficient probabilistic seismic loss assessment of structures using the Endurance Time (ET) analysis and the first-order reliability method (FORM). The ET analysis efficiently yields the structural responses for a continuous range of intensities through a single response-history analysis. Taking advantage of this property of ET, FORM is employed to estimate the annual rate of exceedance for the loss components. The proposed approach is an amalgamation of two analysis approaches, ET and FORM, that significantly lower the computational costs. This makes it possible to evaluate the seismic risk of complex systems. The probability distribution of losses due to the structural and non-structural damage as well as injuries and fatalities of a prototype structure are estimated using the proposed methodology. This methodology is an alternative to the prevalent risk analysis framework of the total probability theorem. Hence, the risk estimates of the proposed approach are compared with those from the total probability theorem as a benchmark. The results indicate a satisfactory agreement between the two methods while a significantly lower computational demand for the proposed approach.

Highly Sensitive and Transparent Pressure Sensor Using Double Layer Graphene Transferred onto Flexible Substrate

  • Chun, Sungwoo;Kim, Youngjun;Jin, Hyungki;Jung, Hyojin;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.229.2-229.2
    • /
    • 2014
  • Graphene, an allotrope of carbon, is a two-dimensional material having a unique electro-mechanical property that shows significant change of the electrical conductance under the applied strain. In addition of the extraordinary mechanical strength [1], graphene becomes a prospective candidate for pressure sensor technology [2]. However, very few investigations have been carried out to demonstrate characteristics of graphene sensor as a device form. In this study, we demonstrate a pressure sensor using graphene double layer as an active channel to generate electrical signal as the response of the applied vertical pressure. For formation of the active channel in the pressure sensor, two single graphene layers which are grown on Cu foil (25 um thickness) by the plasma enhanced chemical vapor deposition (PECVD) are sequentially transformed to the poly-di-methyl-siloxane (PDMS) substrate. Dry and wet transfer methods are individually employed for formation of the double layer graphene. This sensor geometry results a switching characteristic which shows ~900% conductivity change in response to the application of pulsed pressure of 5 kPa whose on and off duration is 3 sec. Additionally, the functional reliability of the sensor confirms consistent behavior with a 200-cycle test.

  • PDF

Performance Oriented Docket-NoC (Dt-NoC) Scheme for Fast Communication in NoC

  • Vijayaraj, M.;Balamurugan, K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.359-366
    • /
    • 2016
  • Today's multi-core technology rapidly increases with more and more Intellectual Property cores on a single chip. Network-on-Chip (NoC) is an emerging communication network design for SoC. For efficient on-chip communication, routing algorithms plays an important role. This paper proposes a novel multicast routing technique entitled as Docket NoC (Dt-NoC), which eliminates the need of routing tables for faster communication. This technique reduces the latency and computing power of NoC. This work uses a CURVE restriction based algorithm to restrict few CURVES during the communication between source and destination and it prevents the network from deadlock and livelock. Performance evaluation is done by utilizing cycle accurate RTL simulator and by Cadence TSMC 18 nm technology. Experimental results show that the Dt-NoC architecture consumes power approximately 33.75% 27.65% and 24.85% less than Baseline XY, EnA, OEnA architectures respectively. Dt-NoC performs good as compared to other routing algorithms such as baseline XY, EnA, OEnA distributed architecture in terms of latency, power and throughput.