• Title/Summary/Keyword: a servo control system

Search Result 1,211, Processing Time 0.037 seconds

Passive, semi-active, and active tuned-liquid-column dampers

  • Chen, Yung-Hsiang;Ding, Ying-Jan
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.1-20
    • /
    • 2008
  • The dynamic characteristics of the passive, semi-active, and active tuned-liquidcolumn dampers (or TLCDs) are studied in this paper. The design of the latter two are based on the first one. A water-head difference (or simply named as water head in this paper) of a passive TLCD is pre-set to form the so-called semi-active one in this paper. The pre-set of water head is released at a proper time instant during an earthquake excitation in order to enhance the vibration reduction of a structure. Two propellers are installed along a shaft inside and at the center of a passive TLCD to form an active one. These two propellers are driven by a servo-motor controlled by a computer to provide the control force. The seismic responses of a five-story shear building with a passive, semiactive, and active TLCDs are computed for demonstration and discussion. The responses of this building with a tuned mass damper (or TMD) are also included for comparison. The small-scale shaking-table experiments of a pendulum-like system with a passive or active TLCD to harmonic and seismic excitations are conducted for verification.

Analysis of a Dynamic PLS of the Biped Walking RGO-Robot for a Trainning of Rehabilitation (척수마비 재활훈련용 이족보행 RGO 로봇의 Dynam ic PLS 생체역학적 특성분석 <응력해석과 FEM을 중심으로>)

  • 김명회;장대진;박창일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.136-141
    • /
    • 2002
  • This paper presents a design and a control of a biped walking RGO-robot and dynamic walking simulation for this system. The biped walking RGO-robot is distinguished from other one by which has a very light-weight and a new AGO type with servo motors. The gait of a biped walking RGO-robot depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the biped walking RGO-robot. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to train effectively with a biped walking AGO-robot.

  • PDF

A Study on the Design and Measurement of Pin Press-Fit Device for Fastening Differential Gear Case and Pinion Shaft (Differential gear case와 피니언 샤프트 체결을 위한 핀 압입 장치설계 및 측정에 관한 연구)

  • Jang, T.H.;Gwon, J.U.;Eum, J.H.;Kim, J.A.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.1
    • /
    • pp.25-30
    • /
    • 2021
  • The differential gear system is a device designed to distribute the driving force of both vehicle wheels and control the rotational speed when the vehicle turns on a curve. The differential device consists of a differential gear case, a ring gear, and a pressure ring. A differential pinion gear and side gear are mounted on the differential pinion shaft inside the differential gear case. In this study, a pin press-fitting device that mounts the pinier gear and side gear to the differential pinion shaft in the differential gear case was designed, and a jig device for pin press-fitting using servo press was developed. In addition, by precisely measuring the pin press-in load and press-in distance according to the pin hole diameter of the differential gear shaft, the optimization of the pin pressin process was established.

Design and Analysis of a PLS of the Biped Walking RGO for a Trainning of Rehabilitation Considering Human Vibration(I) (인체진동을 고려한 재활훈련용 이족보행 RGO 보조기 PLS의 생체역학적 설계와 해석 (I);-인체진동 응력해석과 FEM을 중심으로 -)

  • 김명회;장대진;양현석;백윤수;박영필;박창일
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.10-18
    • /
    • 2003
  • This paper presented a design and control of a biped walking RGO(robotic gait orthosis) and its simulation. The biped walking RGO was distinguished from the other one by which had a very light-weight and a new RGO system will be made of 12-servo motors and 12-controllers. The vibration evaluation of the dynamic PLS(posterior leaf splint) on the biped walking RGO was used to access by the 3-axis accelerometer with a low frequency vibration of less than 30 Hz. The galt of the biped walking RGO depends on the constrains of mechanical kinematics and the initial posture. The stability of dynamic walking was investigated by analyzing the ZMP (zero moment point) of the biped walking RGO. It was designed according to the human wear type and was able to accomodate itself to the environments of S.C.I. Patients. The Joints of each leg were adopted with a good kinematic characteristics. To analyse joint kinematic properties. we made the strain stress analysis of the dynamic PLS and the analysis study of FEM with a dynamic PLS.

Numerical Simulation and Experimental Research of the Flow Coefficient of the Nozzle-Flapper Valve Considering Cavitation

  • Li, Lei;Li, Changchun;Zhang, Hengxuan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.176-188
    • /
    • 2017
  • The nozzle-flapper valves are widely applied as a pilot stage in aerospace and military system. A subject of the analysis presented in this work is to find out a reasonable range of null clearance between the nozzle and flapper. This paper has presented a numerical flow coefficient simulation. In every design point, a parameterized model is created for flow coefficient simulation and cavitation under different conditions with varying gap width and inlet pressure. Moreover, a new test device has been designed to measure the flow coefficient and for visualized cavitation. The numerical simulation and test results both indicate that cavitation intensity gets fierce initially and shrinks finally as the gap width varies from small to large. From the curve, the flow coefficient mostly has experienced three stages: linear throttle section, transition section and saturation section. The appropriate deflection of flapper is recommended to make the gap width drop into the linear throttle section. The flapper-nozzle null clearance is optionally recommended near the range of $D_N/16$. Finally through simulation it is also concluded that the inlet pressure plays a little role in the influence on the flow coefficient.

Real-Time Tracking of Moving Object by Adaptive Search in Spatial-temporal Spaces (시공간 적응탐색에 의한 실시간 이동물체 추적)

  • Kim, Gye-Young;Choi, Hyung-Ill
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.63-77
    • /
    • 1994
  • This paper describes the real-time system which, through analyzing a sequence of images, can extract motional information on a moving object and can contol servo equipment to always locate the moving object at the center of an image frame. An image is a vast amount of two-dimensional signal, so it takes a lot of time to analyze the whole quantity of a given image. Especially, the time needed to load pixels from a memory to processor increase exponentially as the size of an image increases. To solve such a problem and track a moving object in real-time, this paper addresses how to selectively search the spatial and time domain. Based on the selective search of spatial and time domain, this paper suggests various types of techniques which are essential in implementing a real-time tracking system. That is, this paper describes how to detect an entrance of a moving object in the field of view of a camera and the direction of the entrance, how to determine the time interval of adjacent images, how to determine nonstationary areas formed by a moving object and calculated velocity and position information of a moving object based on the determined areas, how to control servo equipment to locate the moving object at the center of an image frame, and how to properly adjust time interval(${\Delta}$t) to track an object taking variable speed.

  • PDF

A Study On Parameter Compensation Scheme in Vector Controlled Induction Motor Drive (벡터제어 유도전동기 구동의 파라메터 보상에 대한 연구)

  • Park, Min-Ho;Kim, Young-Real;Won, Chung-Yuen;Kim, Tae-Hoon;Kim, Yuen-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.20-24
    • /
    • 1989
  • The time optimal position control scheme can be repeatedly taken from the initial state of a dynamic system to a desired one as fast as possible at the industrial drives. In this case, the machine parameters will vary due to temperature, frequency, and saturation effects. In particular, the rotor resistance value changes dramatically with temperature and frequency. These changes affect the command values of the stator current components and slip speed. There is a mismatch between the commanded variables and actual variables of the induction motor drive, and this situation leads to decoupling of the vector controller from the plant, i.e the induction motor. Consequences of such decoupling include the initiation of oscillations of the rotor flux and unsuitable switching of electromagnetic torque of the induction motor servo drive. Therefore, a rotor resistance parameter compensating method for the induction motor is described.

  • PDF

Development of a New Direct Shear Apparatus Considering the Boundary Conditions of Rock Joints (암반의 경계조건을 고려한 절리면 직접전단시험기 개발)

  • 이영휘;김용준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.147-157
    • /
    • 2003
  • The characteristics of a rock joint which influence the stability of rock mass structures such as cut slopes and tunnels are largely controlled by the conditions of the rock joint as well as its boundary conditions. The conditions of rock joints comprise asperity strength, roughness, and filling materials. Boundary conditions can be represented by assuming that the deformability(or stiffness) of the rock mass surrounding the joints is modelled by a spring with stiffness. A new direct shear apparatus was developed in this study, which adapts a servo control system using PID algorithm. This apparatus can be used to investigate the various aspects of shear characteristics of the rock joints at conditions of constant normal stress and constant normal stiffness and so on. The test results for saw-cut teeth joints show that shear strength should be evaluated by considering its specific boundary conditions far the design of tunnels and cut slopes.

Koh Chang Island Eco-Tourism Mapping by Balloon-born Remote Sensing Imagery System

  • Kusanagi, Michiro;Nogami, Jun;Choomnoommanee, Tanapati;Laosuwan, Teerawong;Penaflor, Eileen;Shulian, Niu;Zuyan, Yao
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.894-896
    • /
    • 2003
  • Koh Chang Island is located near the east border of Thailand. The government of Thailand promotes the island as a model of eco-tourism spots. The Island undeveloped until recent years, is expected to change to major tourist attraction. 'Digital Koh Chang project' has thus. The main objective of this project is to monitor the environment and land use status of the island and to support its sound development. In March 2003, a field survey of this project was planned and field data were collected using both airborne and ground platforms and an ocean vessel. These data were combined with satellite data in the laboratory. This presentation is all balloon-born system field operation. A 5-meter length balloon filled with Helium gas was used, whose payload consisted of two RGB standard color digital still cameras, two directional rotating servo motors, a camera mount cradle as well as signal transmitting and receiving components. A series of aerial high-resolution digital images were rather easily obtained using this inexpensive system, making it possible to monitor intended landscape features in a specific field. Design of simple, low-cost and easily transportable flying platforms and local field surveys using them are useful for getting local ground truth data to calibrate satellite or airborne-based RS data. The design analysis to upgrade the system is further investigated.

  • PDF

Weather Data-Based Coordination Recommendation Smart Wardrobe System (날씨 데이터 기반 코디추천 스마트옷장 시스템)

  • Lee, Tae-Hun;Jeong, Hui;Kwon, Jang-Ryong;Baek, Pil-Gyu;Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.729-738
    • /
    • 2022
  • Existing wardrobes have been used only for storing simple clothes. Since it has a function to store clothes, there is only one way to control the environment such as humidity or temperature, and there is only one way to purchase and store items such as a desiccant. In this paper, by increasing the convenience in the existing wardrobe, automatic temperature and humidity control and various convenient functions were added. In line with the smart home market and smart phone application market that have grown over the past several years, along with the development of a wardrobe with sensors, the temperature and humidity control function and other functions inside the wardrobe through Bluetooth pairing between the wardrobe and the smartphone can be customized to the user using a smartphone. Through the clothing selection function and the weather data in the application, we want to implement convenient functions such as the function of recommending clothes in the closet to match the weather.