• Title/Summary/Keyword: a scan conversion

Search Result 75, Processing Time 0.022 seconds

An Efficient Architecture of Transform & Quantization Module in MPEG-4 Video Codec

  • Kibum suh;Song, In-Kuen
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2067-2070
    • /
    • 2002
  • In this paper, a VLSI architecture for transform and quantization module, which consists of 2D-DCT, quantization, AC/DC prediction block, scan conversion, inverse quantization and 2D-IDCT, is presented. The architecture of the module is designed to handle a macroblock data within 1064 cycles and suitable for MPEG-4 video codec handling CIF image formats. Only single 1-D DCT/IDCT cores are used for the design instead of 2-D DCT/IDCT, respectively. 1-bit serial distributed arithmetic architecture is adopted for 1-D DCT/IDCT to reduce the hardware area in this architecture. As the result, the maximum utilization of hardware can be achieved, and power consumption can be minimized. The proposed design is operated on 27MHz clock. The experimental results show that the accuracy of DCT and IDCT meet the IEEE specification.

  • PDF

Generative Adversarial Network-Based Image Conversion Among Different Computed Tomography Protocols and Vendors: Effects on Accuracy and Variability in Quantifying Regional Disease Patterns of Interstitial Lung Disease

  • Hye Jeon Hwang;Hyunjong Kim;Joon Beom Seo;Jong Chul Ye;Gyutaek Oh;Sang Min Lee;Ryoungwoo Jang;Jihye Yun;Namkug Kim;Hee Jun Park;Ho Yun Lee;Soon Ho Yoon;Kyung Eun Shin;Jae Wook Lee;Woocheol Kwon;Joo Sung Sun;Seulgi You;Myung Hee Chung;Bo Mi Gil;Jae-Kwang Lim;Youkyung Lee;Su Jin Hong;Yo Won Choi
    • Korean Journal of Radiology
    • /
    • v.24 no.8
    • /
    • pp.807-820
    • /
    • 2023
  • Objective: To assess whether computed tomography (CT) conversion across different scan parameters and manufacturers using a routable generative adversarial network (RouteGAN) can improve the accuracy and variability in quantifying interstitial lung disease (ILD) using a deep learning-based automated software. Materials and Methods: This study included patients with ILD who underwent thin-section CT. Unmatched CT images obtained using scanners from four manufacturers (vendors A-D), standard- or low-radiation doses, and sharp or medium kernels were classified into groups 1-7 according to acquisition conditions. CT images in groups 2-7 were converted into the target CT style (Group 1: vendor A, standard dose, and sharp kernel) using a RouteGAN. ILD was quantified on original and converted CT images using a deep learning-based software (Aview, Coreline Soft). The accuracy of quantification was analyzed using the dice similarity coefficient (DSC) and pixel-wise overlap accuracy metrics against manual quantification by a radiologist. Five radiologists evaluated quantification accuracy using a 10-point visual scoring system. Results: Three hundred and fifty CT slices from 150 patients (mean age: 67.6 ± 10.7 years; 56 females) were included. The overlap accuracies for quantifying total abnormalities in groups 2-7 improved after CT conversion (original vs. converted: 0.63 vs. 0.68 for DSC, 0.66 vs. 0.70 for pixel-wise recall, and 0.68 vs. 0.73 for pixel-wise precision; P < 0.002 for all). The DSCs of fibrosis score, honeycombing, and reticulation significantly increased after CT conversion (0.32 vs. 0.64, 0.19 vs. 0.47, and 0.23 vs. 0.54, P < 0.002 for all), whereas those of ground-glass opacity, consolidation, and emphysema did not change significantly or decreased slightly. The radiologists' scores were significantly higher (P < 0.001) and less variable on converted CT. Conclusion: CT conversion using a RouteGAN can improve the accuracy and variability of CT images obtained using different scan parameters and manufacturers in deep learning-based quantification of ILD.

The development of a topological data conversion program for the utilization of NGIS data (NGIS 자료 활용을 위한 지형자료 변환 프로그램개발(Topy 1.5))

  • 김진완;홍현수;정의석;임문혁;김선규;김선태
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.364-365
    • /
    • 2003
  • 모델에 입력되는 지형자료의 형태는 좌표별 고도가 체계적으로 정리된 DEM(Digital Elevation Model)형태를 사용할 수 있으며, 과거에는 이러한 지형자료를 얻기 위해 대상지역의 지형도 중 등고선을 대상으로 좌표별 고도수치를 정리하여 구축하거나, 섬세한 지형자료를 구축하고자 할 경우 각 고도별 등고선자료를 scan한 후에 각 등고선별 고도자료의 위상관계를 설정해 주는 작업을 진행하였으나, 두 방법 모두 상당량의 수정작업과 반복작업이 요구되는 단점을 갖고 있었다. 그러나 국립지리원 주도로 1998년 9월부터 시작된 NGIS(National Geogralhic Information Sydtem)사업에 의해 구축된 수치지도를 이용하여 등고선별 고도자료를 추출하고, 이를 가공하여 모델의 입력자료로 활용하는 방법이 최근에 소개되고 있으며, 지형자료의 구축에 소요되는 시간 및 정확한 자료를 구축할 수 있다. (중략)

  • PDF

Development of a Data Conversion System between SDTS and Gothic (SDTS와 GOTHIC간의 데이터 변환 시스템의 개발)

  • 김준종;설영민;이강준;한기준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.170-172
    • /
    • 1998
  • 지리 정보 시스템(GIS)은 그 특성상 대용량의 GIS 데이터를 사용하며, 다양한 소프트웨어와 하드웨어 상에서 구현된다. 이렇게 상이한 하드웨어, 소프트웨어, 그리고 운영 체제상에서 공간 데이터들 간의 효율적인 데이터 교환이 불가능하다면 데이터 공유가 매우 어려울 뿐만 아니라 데이터의 중복 보관 및 관리로 인해 막대할 경제적 손실을 가져온다. 이와 같은 문제점을 해결하기 위해서 국가 차원에서 지리 정보 시스템에 관해 국가 표준을 설정하고, 공간 데이터베이스를 구축하고 있는데 공통데이터교환 포맷으로 채택된 것은 SDTS이다. 본 논문에서는 국가 공통데이타교환 포맷인 SDTS 데이터와 GOTHIC의 데이터를 상호 교환할 수 있는 데이터 변환 시스템을 설계 및 구현한다. 데이터 변환 시스템의 대상이 되는 GOTHIC은 영국 Laser-Scan에서 개발한 GIS 개발 도구로 실세계를 구성하는 개체들을 서로 구분될 수 있는 하나의 객체로 표현하고 있다. 본 논문에서는 우선 GOTHIC과 SDTS의 데이터 포맷 및 데이터의 저장 방법에 대해 분석한다. 그리고, 구현하려고 하는 데이터 변환 시스템의 전체적인 구조를 설계하고, 구조의 각 단계별로 수행될 작업을 구현함으로써 데이터 변환 시스템을 개발한다.

Technical Design of Tight Upper Sportswear based on 3D Scanning Technology and Stretch Property of Knitted Fabric (3차원 스캔 기술과 니트 소재의 신축성을 적용한 밀착형 스포츠웨어 상의 설계)

  • Kim, Tae-Gyou;Park, Soon-Jee;Park, Jung-Whan;Suh, Chu-Yeon;Choi, Sin-Ae
    • Fashion & Textile Research Journal
    • /
    • v.14 no.2
    • /
    • pp.277-285
    • /
    • 2012
  • This research studied how to develop tight upper sportswear from 3D scan data considering fabric stretch property. Subjects were five Korean men of average figure in their 20's. Scanning was done for ten postures via vitus smart/pro(Techmath LTD). Analyzing from 3D scan data, more than 70% of the upper body surface showed surface change rate under 20%. It was shoulder and under arm side part that showed most noticeable body surface change when moving. A parametric model with convex surface was generated and flattened onto the plane, resulting 2D pattern. The error rate occurring in the process of 3D to 2D conversion was 0.2% for outline and 0.13% for area, respectively. Thirteen kinds of stretchable fabrics in the market were collected for this study. Stretch property was in the range of 16.0~58.2% for wale direction; 23.1~78.4% for course. Based on wear trial test, four fabrics were chosen for making the 1st experimental garment and finally one fabric was chosen for the 2nd one, which was developed applying 4 kinds of crosswise reduction rate on 2D pattern: 0, 5, 10, and 15%. Through wear trial test and garment pressure measurement, experimental garment applied with 10% pattern reduction rate was evaluated as most comfortable and considerable.

The Study of Radiation Exposure Reduction by Developing Corpus Striatum Phantom (두개골-선조체 팬텀을 이용한 선량 저감화 방안 연구)

  • Kim, Jung-Soo;Park, Chan-Rok
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.595-603
    • /
    • 2017
  • The study is to produced a brain phantom simulating corpus striatum, which can evaluate the progression of parkinson's disease, to investigate possibility of reducing the brain exposure dose to CT while maintaining optimal image quality during PET-CT examinations. CT scans were performed by varying tube voltage (100, 120 kVp) and tube current (80, 140, 200 mAs) with $^{18}F$ FP-CIT injected into the phantom's hot sphere and background (radioactivity ratio 3:1)(reference condition; 120 kVp, 140 mAs). Estimated effective dose was calculated by using conversion factor according to each condition, and image quality was evaluated by setting SNR and CRChot image evaluation factors. Experimental results showed that the predicted effective dose below the CT imaging reference condition was reduced by at least 10% and by up to 60%, and the predicted effective dose beyond the reference condition was increased by 40%. In addition, there was no significant difference between SNR and CRChot of PET images, and it was confirmed that brain dose decreased with decrease of tube voltage and tube current. At the same time, there was no significant change in the quality of the image in terms of SNR and CRChot despite the change in scan conditions. This fact suggests that the quality of the images acquired under the existing dose conditions can be obtained even at low dose conditions and it is expected that it will be possible to use the brain PET-CT scan as a basic data for the research on reduction of dose and improvement of image quality.

A Study on 3D Scan Technology for Find Archetype of Youngbeokji in Seongnagwon Garden (성락원 영벽지의 원형 파악을 위한 3D 스캔기술 연구)

  • Lee, Won-Ho;Kim, Dong-Hyun;Kim, Jae-Ung;Park, Dong-Jin
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.95-105
    • /
    • 2013
  • This study on circular identifying purposes was performed of Youngbeokji space located in Seongnagwon(Scenic Sites No.35). Through the data acquisition of 3D high precision, such as the surrounding terrain of the Youngbeokji. The results of this study is summarized like the following. First, the purpose of the stone structures and structure within the Youngbeokji search is an important clue to find that earlier era will be a prototype. 3D scan method of enforcement is searching the whole structure, including the surrounding terrain and having the easy way. Second, the measurement results are as follows. Department of bedrock surveyed from South to North was measured by 7,665mm. From East to West was measured at 7,326mm. The size of the stone structures, $1,665mm{\times}1,721mm$ in the form of a square. Its interior has a diameter of 1, 664mm of hemispherical form. In the lower portion of the rock masses in the South to the North, has fallen out of the $1,006mm{\times}328mm$ scale traces were discovered. Third, the Youngbeokji recorded in the internal terrain Multiresolution approach. After working with the scanner and scan using the scan data, broadband, to merge. Polygon Data conversion to process was conducted and mash as fine scan data are converted to process data. High resolution photos obtained through the creation of 3D terrain data overlap and the final result. Fourthly, as a result of this action, stone structure West of the waterway back outgoing times oil was confirmed. Bangjiwondo is estimated to be seokji of structure hydroponic facility confirmed will artificially carved in the bedrock. As a result of this and the previous situation of the 1960s could compare data was created. This study provides 3D precision ordnance through the acquisition of the data. Excavations at the circle was able to preserve in perpetuity as digital data. In the future, this data is welcome to take a wide variety of professionals. This is the purpose of this is to establish foundations and conservation management measures will be used. In addition, The new ease of how future research and 3D scan unveiled in the garden has been used in the study expect.

Integrated GUI Environment of Parallel Fuzzy Inference System for Pattern Classification of Remote Sensing Images

  • Lee, Seong-Hoon;Lee, Sang-Gu;Son, Ki-Sung;Kim, Jong-Hyuk;Lee, Byung-Kwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.133-138
    • /
    • 2002
  • In this paper, we propose an integrated GUI environment of parallel fuzzy inference system fur pattern classification of remote sensing data. In this, as 4 fuzzy variables in condition part and 104 fuzzy rules are used, a real time and parallel approach is required. For frost fuzzy computation, we use the scan line conversion algorithm to convert lines of each fuzzy linguistic term to the closest integer pixels. We design 4 fuzzy processor unit to be operated in parallel by using FPGA. As a GUI environment, PCI transmission, image data pre-processing, integer pixel mapping and fuzzy membership tuning are considered. This system can be used in a pattern classification system requiring a rapid inference time in a real-time.

A High-speed Fuzzy Controller with Integer Operations on GUI Environments (GUI 환경에서의 정수형 연산만을 사용한 고속 퍼지제어기)

  • Kim, Jong-Hyuk;Son, Ki-Sung;Lee, Byung-Kwon;Lee, Sang-Gu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.373-378
    • /
    • 2002
  • In fuzzy inferencing, most of conventional fuzzy controllers have problems of speed down in floating point operations of fuzzy membership functions in (0,1) as compared with integer operations. Therefore, in this paper, we propose a high-speed fuzzy controller with only integer operations. In this, for fast fuzzy computations, we use a scan line conversion algorithm to convert lines of each fuzzy linguistic term to the set of the closest integer pixels. We also implement a GUI (Graphic User Interface) application program for the convenient environments to modify and input fuzzy membership functions.

Laser scribing for buried contact solar cell processing (전극함몰형 태양전지의 제조를 위한 레이저 scribing)

  • 조은철;조영현;이수홍
    • Electrical & Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.593-599
    • /
    • 1996
  • Laser scribing of silicon plays an important role in metallization including the grid pattern and the front surface geometry which means aspect ratio of metal contacts. To make a front metal electrode of buried contact solar cell, we used ND:YAG lasers that deliver average 3-4W at TEM$\_$00/ mode power to sample stage. The Q-switched Nd:YAG laser of 1.064 gm wavelength was used for silicon scribing with 20-40.mu.m width and 20-200.mu.m depth capabilities. After silicon slag etching, the groove width and depth for buried contact solar cell are -20.mu.m and 30-50.mu.m respectively. Using MEL 40 Nd:YAG laser system, we can scribe the silicon surface with 18-23.mu.m width and 20-200.mu.m depth controlled by krypton arc lamp power, scan speed, pulse frequency and beam focusing. We fabricated a buried contact Silicon Solar Cell which had an energy conversion efficiency of 18.8 %. In this case, the groove width and depth are 20.mu.m and 50.mu.m respectively.

  • PDF