• Title/Summary/Keyword: a power plant

Search Result 5,676, Processing Time 0.033 seconds

Power cost evaluation of 350 MWe nuclear power plant (350MWe 원자력 발전소의 발전원가 추정)

  • 노윤래
    • 전기의세계
    • /
    • v.16 no.4
    • /
    • pp.41-49
    • /
    • 1967
  • This paper covers an estimation and analysis of generating cost of 350MWe nuclear power plant using a pressurized water reactor on the assumption that such a nuclear power plant would be constructed in Korea in or around 1970. For the evaluation of this generating cost, an extensive study has been conducted based on the current information on operating and costing parameters of light water reactors, particularly those of pressurized water reactors. Based on this study, a total generating cost of 7.29 Mills/Kwh was evaluated by operating the plant at 80% plant factor. For this calculation, a steady state method was introduced. It is considered, therefore, that a total generating cost in the beginning of plant operation would be a little higher than 7.29 Mills/Kwh, which has been calculated in the state of equilibrium.

  • PDF

A Study on the Workplace Noise Environment of Office Areas in Power Plant (발전소 관리실의 작업환경 소음에 관한 연구)

  • 김병삼
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.35-41
    • /
    • 1998
  • The workplace noise environment is composed of three basic elements : manufacturing (in a generic sense) facilities, office areas, and the community around the facility. Work must be done by all employees , and this involves communication within a variety of locations within the facility ; areas may be extremely noisy, moderately noisy, or quiet, such as an office. At the same time, the facility should not be annoying to the community. In this paper, the workplace environmental noise of office areas in power plant are studied. Turbine generator in power plant generates the noise of 90∼95 dB(A) in the frequency range of 1 kHz, which may cause occupational hearing loss. By abatement method which are made of isolation material and distance damping effect, about 29.5 dB(A) reduction has been obtained in office areas of the Power Plant . But, the workplace environmental noise of office areas in the power plant is not suited to office's purpose.

Determining thermal comfort properties of coverall worn in the atomic power plant using a sweating thermal manikin and ISO 7730 (발한 Thermal manikin과 국제 표준 7730을 이용한 원자력 발전소 작업복의 열적 쾌적성 판별)

  • 홍성애
    • Journal of the Ergonomics Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.91-103
    • /
    • 1996
  • For determining thermal comfort properties of work suit in an atomic power plant, three different coverall ensembles (PVE, PET/Rayon, PP Nonwoven) were selected and the resistance to dry and evaporative heat transfer were measured for each ensemble by using a sweating thermal manikin. Also, PMV (Predicted Mean Vote) and PPD(Predicted Percentage of Dissatisfied) indices were predicted according to ISO 7730. As a result, ideal environmental conditions in an atomic power plant were suggested to make workers feel thermally comfortable. In addition, ideal intrinsic insulation values of coverall ensembles as a work suit under the present environmental conditions in the at6omic power plant were provided. The information given in this paper can be used to control environmental conditions in the atomic power plant thermally comfortable and to select a proper work suit for providing thermal comfort to the workers.

  • PDF

Economic Feasibility of Circulating Fluidized Bed Combustion Boiler Power Plant for Low Grade Coal (저급탄용 순환유동층 보일러 발전설비의 경제성 평가)

  • Hong, Min-Pyo;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.8 no.1
    • /
    • pp.73-80
    • /
    • 2012
  • The structure and combustion characteristics, and the economic feasibility of the circulating fluidized bed combustion(CFBC) boiler using low grade coal were introduced. The economic feasibility is evaluated by comparing a 500 MW CFBC boiler power plant using low grade coal and a pulverized combustion boiler power plant with high grade coal. As the result of the evaluation, the pulverized coal combustion boiler power plant has an internal rate of return of 12.95%, 1,395.9 billion Korean won of net present value, and 6.26 years of payback period. On the other hand, CFBC boiler power plant has an internal rate of return of 13.54%, 1,704.3 billion Korean won of net present value, and 6.02 years payback period. Therefore, the CFBC boiler power plant has better feasibility in all aspects, as 0.59% higher of internal rate of return, 308.4 billion Korean won of higher net present value and 0.24 year of shorter payback period.

  • PDF

Performance Evaluation of an Oxy-coal-fired Power Generation System - Thermodynamic Evaluation of Power Cycle (순산소 석탄 연소 발전 시스템의 성능 평가 - 동력 사이클의 열역학적 해석)

  • Lee, Kwang-Jin;Choi, Sang-Min;Kim, Tae-Hyung;Seo, Sang-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.1-11
    • /
    • 2010
  • Power generation systems based on the oxy-coal combustion with carbon dioxide capture and storage (CCS) capability are being proposed and discussed lately. Although a large number of lab scale studies for oxy-coal power plant have been made, studies of pilot scale or commercial scale power plant are not enough. Only a few demonstration projects for oxy-coal power plant are publicized recently. The proposed systems are evolving and various alternatives are to be comparatively evaluated. This paper presents a proposed approach for performance evaluation of a commercial 100 MWe class power plant, which is currently being considered for 'retrofitting' for the demonstration of the concept. The system is configurated based on design and operating conditions with proper assumptions. System components to be included in the discussion are listed. Evaluation criteria in terms of performance are summarized based on the system heat and mass balance and simple performance parameters, such as the fuel to power efficiency and brief introduction of the second law analysis. Also, gas composition is identified for additional analysis to impurities in the system including the purity of oxygen and unwanted gaseous components of nitrogen, argon and oxygen in air separation unit and $CO_2$ processing unit.

A Study on Hydro Energy Development of Discharged Cooling Water at the Power Plant (발전소 온배수의 수력에너지 개발에 관한 연구)

  • Kang, K.S.;Lee, D.S.;Kim, J.Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.813-818
    • /
    • 2005
  • Cooling seawater of thermal power plant which amounts about 5 cms per 100 MWe has hydro energy of about 3,000 kW at the thermal power plant complex, but this useful hydro energy has not been developed. Therefore, the feasibility study on hydro energy development of three power plants located in the southern and western coast of Korea was performed. Three target power plants are Samcheonpo, Boryeong and Hadong thermal power plant. The design head to discharge cooling water by gravity and the head caused by tidal level in the southwestern coastal area, could be used for the production of electric power. The various alternatives were studied and technical feasibility and economical efficiency were clearly proved.

  • PDF

A Study on the Implementation of CAN in the Distributed System of Power Plant (발전설비 분산제어 시스템에서 CAN 구축기술 연구)

  • Kim, Uk-Heon;Hong, Seung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.760-772
    • /
    • 1999
  • The CAN is a serial communication protocol for distributed real-time control and automation systems. Data generated from field devices in the distributed control of power plant are classified into three categories: real-time event data, real-time control data, non-real-time data. These data share a CAN medium. If the traffic of the CAN protocol is not efficiently controlled, performance requirements of the power plant system could not be satisfied. This paper proposes a bandwidth allocation algorithm that can be applicable to the CAN protocol. The bandwidth allocation algorithm not only satisfies the performance requirements of the real-time systems in the power plant but also fully utilizes the bandwidth of CAN. The bandwidth allocation algorithm introduced in this paper is validated using the integrated discrete-event/continuous-time simulation model which comprises the CAN network and distributed control system of power plant.

  • PDF

Development of Flux Mapping Technique for the Solar Power Tower Plant (타워형 태양열발전을 위한 열유속 분포 측정기술 개발)

  • Chai, Kwan-Kyo;Lee, Hyun-Jin;Kim, Jong-Kyu;Yoon, Hwan-Ki;Lee, Sang-Nam;Kang, Yong-Heack;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.274-279
    • /
    • 2012
  • Daegu Solar Power Tower Plant of 200 kW thermal capacity was developed for the first time in Korea, 2011. Measurement of the heat flux distribution is essential to evaluate the solar energy concentrated by reflectors and to design a suitable receiver. The flux mapping technique, which uses a radiometer and a diffuse plate, is common for measurement of the heat flux distribution. Because the solar power tower plant has a wide concentration area, the flux mapping technique using a fixed diffuse plate is difficult to apply. Therefore, the flux distribution in the solar power tower plant should be measured by the flux mapping technique using a small moving bar. In this study, we measured flux distributions with the moving-bar system developed at the KIER solar furnace and evaluated its applicability for the solar power tower plant.

  • PDF

Power and Efficiency Optimization through Exergy Analysis of Power Plant (발전 플랜트의 엑서지 해석으로부터 발전량 및 발전효율 최적화)

  • Kim, Deok-Jin;Lee, Jae-Byoung;Kang, Su-Hwan
    • Plant Journal
    • /
    • v.9 no.3
    • /
    • pp.43-47
    • /
    • 2013
  • Even if an expert who has majored energy engineering, it is a difficult concept to understand power output optimization and power efficiency optimization. In this study a diagram applying thermodynamic state value as specific exergy and exergy ratio was developed. Although general peoples who did not major energy engineering can be easily understand the concept of power output optimization and power efficiency through the developed diagram. A represented property that can identify the performance of power plant is the main steam temperature and pressure. At the developed diagram the maximum power output line and maximum power efficiency line are shown according to the temperature and pressure of main steam. Therefore we can identify how much a power plant approach to maximum power output and maximum power efficiency.

  • PDF

Technological Catching-up of Nuclear Power Plant in Korea: The Case of OPR1000

  • Lee, Tae Joon;Lee, Young-Joon
    • Asian Journal of Innovation and Policy
    • /
    • v.5 no.1
    • /
    • pp.92-115
    • /
    • 2016
  • This paper presents how Korea succeeded in developing an indigenous nuclear power plant model over fifty years. Long-lasting national R&D for technical progress and the Korean government for managerial process were the two pillars in the build-up of indigenous Nuclear Power Plant (NPP) technological capabilities. The concept of technological capabilities is used to examine its evolutionary process with a qualitative and longitudinal approach. The government had a developing country ambition to formulate a strategic plan for technical self-reliance on nuclear power plant while establishing the country’s institutions and organization structure for the plan. Under the government leadership, it was national R&D that led to the resolution of a good number of technological problems, efficiently, by absorbing imported technologies and effectively adapting them to local circumstances.