• 제목/요약/키워드: a posteriori probabilities (APP)

검색결과 2건 처리시간 0.015초

Soft-Input Soft-Output Multiple Symbol Detection for Ultra-Wideband Systems

  • Wang, Chanfei;Gao, Hui;Lv, Tiejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2614-2632
    • /
    • 2015
  • A multiple symbol detection (MSD) algorithm is proposed relying on soft information for ultra-wideband systems, where differential space-time block code is employed. The proposed algorithm aims to calculate a posteriori probabilities (APP) of information symbols, where a forward and backward message passing mechanism is implemented based on the BCJR algorithm. Specifically, an MSD metric is analyzed and performed for serving the APP model. Furthermore, an autocorrelation sampling is employed to exploit signals dependencies among different symbols, where the observation window slides one symbol each time. With the aid of the bidirectional message passing mechanism and the proposed sampling approach, the proposed MSD algorithm achieves a better detection performance as compared with the existing MSD. In addition, when the proposed MSD is exploited in conjunction with channel decoding, an iterative soft-input soft-output MSD approach is obtained. Finally, simulations demonstrate that the proposed approaches improve detection performance significantly.

Soft-Decision for Differential Amplify-and-Forward over Time-Varying Relaying Channel

  • Gao, Fengyue;Kong, Lei;Dong, Feihong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1131-1143
    • /
    • 2016
  • Differential detection schemes do not require any channel estimation, which can be employed under user mobility with low computational complexity. In this work, a soft-input soft-output (SISO) differential detection algorithm is proposed for amplify-and-forward (AF) over time-varying relaying channels based cooperative communications system. Furthermore, maximum-likelihood (ML) detector for M-ary differential Phase-shift keying (DPSK) is derived to calculate a posteriori probabilities (APP) of information bits. In addition, when the SISO is exploited in conjunction with channel decoding, iterative detection and decoding approach by exchanging extrinsic information with outer code is obtained. Finally, simulation results show that the proposed non-coherent approach improves detection performance significantly. In particular, the system can obtain greater performance gain under fast-fading channels.