• Title/Summary/Keyword: a higher-order shear deformation theory

Search Result 301, Processing Time 0.02 seconds

Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions

  • Belkacem, Adim;Tahar, Hassaine Daouadji;Abderrezak, Rabahi;Amine, Benhenni Mohamed;Mohamed, Zidour;Boussad, Abbes
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.761-769
    • /
    • 2018
  • In this paper, we study the Carbon/Glass hybrid laminated composite plates, where the buckling behavior is examined using an accurate and simple refined higher order shear deformation theory. This theory takes account the shear effect, where shear deformation and shear stresses will be considered in determination of critical buckling load under different boundary conditions. The most interesting feature of this new kind of hybrid laminated composite plates is that the possibility of varying components percentages, which allows us for a variety of plates with different materials combinations in order to overcome the most difficult obstacles faced in traditional laminated composite plates like (cost and strength). Numerical results of the present study are compared with three-dimensional elasticity solutions and results of the first-order and the other higher-order theories issue from the literature. It can be concluded that the proposed theory is accurate and simple in solving the buckling behavior of hybrid laminated composite plates and allows to industrials the possibility to adjust the component of this new kind of plates in the most efficient way (reducing time and cost) according to their specific needs.

Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory

  • Zenkour, A.M.;Aljadani, M.H.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.615-632
    • /
    • 2018
  • Mechanical buckling of a rectangular functionally graded plate is obtained in the current paper using a refined higher-order shear and normal deformation theory. The impact of transverse normal strain is considered. The material properties are microscopically inhomogeneous and vary continuously based on a power law form in spatial direction. Navier's procedure is applied to examine the mechanical buckling behavior of a simply supported FG plate. The mechanical critical buckling subjected to uniaxial and biaxial compression loads are determined. The numerical investigation are compared with the numerical results in the literature. The influences of geometric parameters, power law index and different loading conditions on the critical buckling are studied.

A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams

  • Meradjah, Mustapha;Bouakkaz, Khaled;Zaoui, Fatima Zohra;Tounsi, Abdelouahed
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.269-282
    • /
    • 2018
  • In this paper, a new displacement field based on quasi-3D hybrid-type higher order shear deformation theory is developed to analyze the static and dynamic response of exponential (E), power-law (P) and sigmoïd (S) functionally graded beams. Novelty of this theory is that involve just three unknowns with including stretching effect, as opposed to four or even greater numbers in other shear and normal deformation theories. It also accounts for a parabolic distribution of the transverse shear stresses across the thickness, and satisfies the zero traction boundary conditions at beams surfaces without introducing a shear correction factor. The beam governing equations and boundary conditions are determined by employing the Hamilton's principle. Navier-type analytical solutions of bending and free vibration analysis are provided for simply supported beams subjected to uniform distribution loads. The effect of the sigmoid, exponent and power-law volume fraction, the thickness stretching and the material length scale parameter on the deflection, stresses and natural frequencies are discussed in tabular and graphical forms. The obtained results are compared with previously published results to verify the performance of this theory. It was clearly shown that this theory is not only accurate and efficient but almost comparable to other higher order shear deformation theories that contain more number of unknowns.

On the Modification of a Classical Higher-order Shear Deformation Theory to Improve the Stress Prediction of Laminated Composite Plates (적층평판의 응력해석 향상을 위한 고전적 고차전단변형이론의 개선)

  • Kim, Jun-Sik;Han, Jang-Woo;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.249-257
    • /
    • 2011
  • In this paper, an systematic approach is presented, in which the mixed variational theorem is employed to incorporate independent transverse shear stresses into a classical higher-order shear deformation theory(HSDT). The HSDT displacement field is taken to amplify the benefits of using a classical shear deformation theory such as simple and straightforward calculation and numerical efficiency. Those independent transverse shear stresses are taken from the fifth-order polynomial-based zig-zag theory where the fourth-order transverse shear strains can be obtained. The classical displacement field and independent transverse shear stresses are systematically blended via the mixed variational theorem. Resulting strain energy expressions are named as an enhanced higher-order shear deformation theory via mixed variational theorem(EHSDTM). The EHSDTM possess the same computational advantage as the classical HSDT while allowing for improved through-the-thickness stress and displacement variations via the post-processing procedure. Displacement and stress distributions obtained herein are compared to those of the classical HSDT, three-dimensional elasticity, and available data in literature.

Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory

  • Zaoui, Fatima Zohra;Tounsi, Abdelouahed;Ouinas, Djamel
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.509-524
    • /
    • 2017
  • In this article, a free vibration analysis of functionally graded (FG) plates resting on elastic foundations is presented using a quasi-3D hybrid-type higher order shear deformation theory. Undetermined integral terms are employed in the proposed displacement field and modeled based on a hybrid-type (sinusoidal and parabolic) quasi-3D HSDT with five unknowns in which the stretching effect is taken into account. Thus, it can be said that the significant feature of this theory is that it deals with only 5 unknowns as the first order shear deformation theory (FSDT). The elastic foundation parameters are introduced in the present formulation by following the Pasternak (two-parameter) mathematical model. Equations of motion are obtained via the Hamilton's principles and solved using Navier's method. Accuracy of the proposed theory is confirmed by comparing the results of numerical examples with the ones available in literature.

Analysis of laminated and sandwich spherical shells using a new higher-order theory

  • Shinde, Bharti M.;Sayyad, Atteshamudin S.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.19-40
    • /
    • 2020
  • In the present study, a fifth-order shear and normal deformation theory using a polynomial function in the displacement field is developed and employed for the static analysis of laminated composite and sandwich simply supported spherical shells subjected to sinusoidal load. The significant feature of the present theory is that it considers the effect of transverse normal strain in the displacement field which is eliminated in classical, first-order and many higher-order shell theories, while predicting the bending behavior of the shell. The present theory satisfies the zero transverse shear stress conditions at the top and bottom surfaces of the shell. The governing equations and boundary conditions are derived using the principle of virtual work. To solve the governing equations, the Navier solution procedure is employed. The obtained results are compared with Reddy's and Mindlin's theory for the validation of the present theory.

Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.229-249
    • /
    • 2016
  • In this paper, buckling characteristics of nonhomogeneous functionally graded (FG) nanobeams embedded on elastic foundations are investigated based on third order shear deformation (Reddy) without using shear correction factors. Third-order shear deformation beam theory accounts for shear deformation effects by a parabolic variation of all displacements through the thickness, and verifies the stress-free boundary conditions on the top and bottom surfaces of the FG nanobeam. A two parameters elastic foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam in deformation, which acts in tension as well as in compression. The material properties of FG nanobeam are supposed to vary gradually along the thickness and are estimated through the power-law and Mori-Tanaka models. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. Nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. Comparison between results of the present work and those available in literature shows the accuracy of this method. The obtained results are presented for the buckling analysis of the FG nanobeams such as the effects of foundation parameters, gradient index, nonlocal parameter and slenderness ratio in detail.

Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory

  • Bouderba, Bachir
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.311-325
    • /
    • 2018
  • This article presents the bending analysis of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment. Theoretical formulations are based on a recently developed refined shear deformation theory. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. The present theory satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the present refined shear deformation theory contains only four unknowns as against five in case of other shear deformation theories. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as non-uniform foundation. The results of the shear deformation theories are compared together. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and elastic foundation parameters on the thermo-mechanical behavior of functionally graded plates. Numerical results show that the present theory can archive accuracy comparable to the existing higher order shear deformation theories that contain more number of unknowns.

Analytical solutions using a higher order refined theory for the stability analysis of laminated composite and sandwich plates

  • Kant, T.;Swaminathan, K.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.337-357
    • /
    • 2000
  • Analytical formulations and solutions for the first time, to the stability analysis of a simply supported composite and sandwich plates based on a higher order refined theory, developed by the first author and already reported in the literature are presented. The theoretical model presented herein incorporates laminate deformations which account for the effects of transverse shear deformation, transverse normal strain/stress and a nonlinear variation of inplane displacements with respect to the thickness coordinate - thus modelling the warping of transverse cross sections more accurately and eliminating the need for shear correction coefficients. The equations of equilibrium are obtained using the Principle of Minimum Potential Energy (PMPE). The comparison of the results using this higher order refined theory with the available elasticity solutions and the results computed independently using the first order and the other higher order theories developed by other investigators and available in the literature shows that this refined theory predicts the critical buckling load more accurately than all other theories considered in this paper. New results for sandwich laminates are also presented which may serve as a benchmark for future investigations.

A novel first-order shear deformation theory for laminated composite plates

  • Sadoune, Mohamed;Tounsi, Abdelouahed;Houari, Mohammed Sid Ahmed;Adda Bedia, El Abbes
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.321-338
    • /
    • 2014
  • In the present study, a new simple first-order shear deformation theory is presented for laminated composite plates. Moreover, the number of unknowns of this theory is the least one comparing with the traditional first-order and the other higher-order shear deformation theories. Equations of motion and boundary conditions are derived from Hamilton's principle. Analytical solutions of simply supported antisymmetric cross-ply and angle-ply laminates are obtained and the results are compared with the exact three-dimensional (3D) solutions and those predicted by existing theories. It can be concluded that the proposed theory is accurate and simple in solving the static bending and free vibration behaviors of laminated composite plates.