• Title/Summary/Keyword: a higher-order shear deformation theory

Search Result 306, Processing Time 0.021 seconds

Mechanical behaviour of advanced composite beams via a simple quasi-3D integral higher-order beam theory

  • Khaled Bouakkaz;Ibrahim Klouche Djedid;Kada Draiche;Abdelouahed Tounsi;Muzamal Hussain
    • Advances in materials Research
    • /
    • v.13 no.5
    • /
    • pp.335-353
    • /
    • 2024
  • In the present paper, a simple quasi-3D integral higher-order beam theory (HBT) is presented, in which both shear deformation and thickness stretching effects are included for mechanical analysis of advanced composite beams with simply supported boundary conditions, handling mainly bending, buckling, and free vibration problems. The kinematics is based on a novel displacement field which includes the undetermined integral terms and the parabolic function is used in terms of thickness coordinate to represent the effect of transverse shear deformation. The governing equilibrium equations are drawn from the dynamic version of the principle of virtual work; whereas the solution of the problem is obtained by assuming a Navier technique for simply supported advanced composite beams subjected to sinusoidally and uniformly distributed loads. The correctness of the present computational method is checked by comparing the obtained numerical results with quasi-3D solutions found in the literature and with those provided by other shear deformation beam theories. It can be confirmed that the proposed model, which does not involve any shear correction factor, is not only accurate but also simple and useful in solving the static and dynamic response of advanced composite beams.

A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates

  • Hebali, Habib;Bakora, Ahmed;Tounsi, Abdelouahed;Kaci, Abdelhakim
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.473-495
    • /
    • 2016
  • This work presents a bending, buckling, and vibration analysis of functionally graded plates by employing a novel higher-order shear deformation theory (HSDT). This theory has only four unknowns, which is even less than the first shear deformation theory (FSDT). A shear correction coefficient is, thus, not needed. Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

HIGHER ORDER ZIG-ZAG SHELL THEORY FOR SMART COMPOSITE STRUCTURES UNDER THERMO-ELECTRIC-MECHANICAL LOADING (고차 지그재그 이론을 이용한 열_전기_기계 하중하의 스마트 복합재 쉘 구조물의 해석)

  • Oh, Jin-Ho;Cho, Maeng-Hyo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.1-4
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine accurately predict deformation and stress of smart shell structures under the mechanical, thermal, and electric loading. The displacement fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. The mechanical, thermal, and electric loading is applied in the sinusoidal distribution function in the in-surface direction. Thermal and electric loading is given in the linear variation through the thickness. Especially, in electric loading case, voltage is only applied in piezo-layer. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. In order to obtain accurate transverse shear and normal stresses, integration of equilibrium equation approach is used. The numerical examples of present theory demonstrate the accuracy and efficiency of the proposed theory. The present theory is suitable for the predictions of behaviors of thick smart composite shell under mechanical, thermal, and electric loadings combined.

  • PDF

Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations

  • Bakora, Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.85-106
    • /
    • 2015
  • Postbuckling of thick plates made of functionally graded material (FGM) subjected to in-plane compressive, thermal and thermomechanical loads is investigated in this work. It is assumed that the plate is in contact with a Pasternak-type elastic foundation during deformation. Thermomechanical non-homogeneous properties are considered to be temperature independent, and graded smoothly by the distribution of power law across the thickness in the thickness in terms of the volume fractions of constituents. By employing the higher order shear deformation plate theory together the non-linear von-Karman strain-displacement relations, the equilibrium and compatibility equations of imperfect FGM plates are derived. The Galerkin technique is used to determine the buckling loads and postbuckling equilibrium paths for simply supported plates. Numerical examples are presented to show the influences of power law index, foundation stiffness and imperfection on the buckling and postbuckling loading capacity of the plates.

Size-dependent free vibration and dynamic analyses of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory

  • Arefi, Mohammad;Bidgoli, Elyas Mohammad-Rezaei;Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.27-40
    • /
    • 2018
  • The governing equations of motion are derived for analysis of a sandwich microbeam in this paper. The sandwich microbeam is including an elastic micro-core and two piezoelectric micro-face-sheets. The microbeam is subjected to transverse loads and two-dimensional electric potential. Higher-order sinusoidal shear deformation beam theory is used for description of displacement field. To account size dependency in governing equations of motion, strain gradient theory is used to mention higher-order stress and strains. An analytical approach for simply-supported sandwich microbeam with short-circuited electric potential is proposed. The numerical results indicate that various types of parameters such as foundation and material length scales have significant effects on the free vibration responses and dynamic results. Investigation on the influence of material length scales indicates that increase of both dimensionless material length scale parameters leads to significant changes of vibration and dynamic responses of microbeam.

A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations

  • Soltani, Kheira;Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Kaci, Abdelhakim;Benguediab, Mohamed;Tounsi, Abdelouahed;Alhodaly, Mohammed Sh
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.13-29
    • /
    • 2019
  • This work presents the buckling investigation of functionally graded plates resting on two parameter elastic foundations by using a new hyperbolic plate theory. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modelled with only four unknowns and which is even less than the first order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT) by introducing undetermined integral terms, hence it is unnecessary to use shear correction factors. The governing equations are derived using Hamilton's principle and solved using Navier's steps. The validation of the proposed theoretical model is performed to demonstrate the efficacy of the model. The effects of various parameters like the Winkler and Pasternak modulus coefficients, inhomogeneity parameter, aspect ratio and thickness ratio on the behaviour of the functionally graded plates are studied. It can be concluded that the present theory is not only accurate but also simple in predicting the critical buckling loads of functionally graded plates on elastic foundation.

A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions

  • Barati, Mohammad Reza;Shahverdi, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.707-727
    • /
    • 2016
  • In this paper, thermal vibration of a nonlocal functionally graded (FG) plates with arbitrary boundary conditions under linear and non-linear temperature fields is explored by developing a refined shear deformation plate theory with an inverse cotangential function in which shear deformation effect was involved without the need for shear correction factors. The material properties of FG nanoplate are considered to be temperature-dependent and graded in the thickness direction according to the Mori-Tanaka model. On the basis of non-classical higher order plate model and Eringen's nonlocal elasticity theory, the small size influence was captured. Numerical examples show the importance of non-uniform thermal loadings, boundary conditions, gradient index, nonlocal parameter and aspect and side-to-thickness ratio on vibrational responses of size-dependent FG nanoplates.

Bending analysis of advanced composite plates using a new quasi 3D plate theory

  • Houari, Tarek;Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.557-572
    • /
    • 2018
  • In this paper, a refined higher-order shear deformation theory including the stretching effect is developed for the analysis of bending analysis of the simply supported functionally graded (FG) sandwich plates resting on elastic foundation. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The theory presented is variationally consistent, without the shear correction factor. The present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

On the modeling of dynamic behavior of composite plates using a simple nth-HSDT

  • Djedid, I. Klouche;Draiche, Kada;Guenaneche, B.;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.371-387
    • /
    • 2019
  • In the present paper, a simple refined nth-higher-order shear deformation theory is applied for the free vibration analysis of laminated composite plates. The proposed displacement field is based on a novel kinematic in which include the undetermined integral terms and contains only four unknowns, as against five or more in case of other higher-order theories. The present theory accounts for adequate distribution of the transverse shear strains through the plate thickness and satisfies the shear stress-free boundary conditions on the top and bottom surfaces of the plate, therefore, it does not require problem dependent shear correction factor. The governing equations of motion are derived from Hamilton's principle and solved via Navier-type to obtain closed form solutions. The numerical results of non-dimensional natural frequencies obtained by using the present theory are presented and compared with those of other theories available in the literature to verify the validity of present solutions. It can be concluded that the present refined theory is accurate and efficient in predicting the natural frequencies of isotropic, orthotropic and laminated composite plates.

Effect of shear stresses on the deflection and optimal configuration of a rectangular FGM structure

  • Ayoub El Amrani;Hafid Mataich;Jaouad El-Mekkaoui;Bouchta El Amrani
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.391-407
    • /
    • 2023
  • This paper presents a static study of a rectangular functional graded material (FGM) plate, simply supported on its four edges, adopting a refined higher order theory that looks for, only,four unknowns,without taking into account any corrective factor of the deformation energy with the satisfaction of the zero shear stress conditions on the upper and lower faces of the plate. We will have determined the contribution of these stresses in the transverse deflection of the plate, as well as their effects on the axial stress within the interfaces between the layers(to avoid any problem of imperfections such as delamination) and on the top and bottom edges of the plate in order to take into account the fatigue phenomenon when choosing the distribution law of the properties used during the design of the plate. A numerical statement, in percentage, of the contribution of the shear effect is made in order to show the reliability of the adopted theory. We will also have demonstrated the need to add the shear effect when the aspect ratio is small or large. Code routines are programmed to obtain numerical results illustrating the validity of the model proposed in the theory compared to those available in the literature.