• 제목/요약/키워드: a full car model

검색결과 84건 처리시간 0.034초

3D PLM 시스템을 이용한 F-125 차량의 개발 (Development of an F-125 Machine Using 3D PLM Systems)

  • 이상헌;이강수
    • 한국CDE학회논문집
    • /
    • 제10권2호
    • /
    • pp.77-88
    • /
    • 2005
  • This paper introduces a project for the development of an F-125 machine using 3D PLM systems including 3D CAD, CAM, CAE, PDM, and DMU systems. Here, the F-125 machine is a formula racing car equipped with a 125cc motorcycle engine. A development process and computer-integrated environment was established using 3D PLM systems on the conceptual basis of concurrent and virtual engineering. A DMU model for a full vehicle was built using CATIA V.5 and used to check interference between parts and to simulate assembly process. This DMU-based approach enables to find and fix manufacturing problems in the early design stage. All development activities have been done by the graduate and undergraduate students of the automotive engineering department of Kookmin University. Through the project, the students could acquire knowledge about car development process and 3D PLM systems in automotive industry.

TTX 구동차 설계안의 충돌압괴특성 분석 (Crush Analysis of a TTX M-Car Design)

  • 정현승;권태수;구정서;조태민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.616-621
    • /
    • 2004
  • In this paper, the crush characteristics of a tilting train express (TTX) M-car design are evaluated with a head-on collision scenario. Its body shell is divided into three parts - front end, middle section, and rear end. For each part, crush-force relation is evaluated numerically through 3-dimensional shell element analysis with LS-DYNA. TTX's embody structure is a hybrid type structure made of steel and composite materials. Composite sandwich panels are modeled as layered shells whose layers have different material properties. And a damage material model is used to consider the effect of stiffness degradation during deformation. The crush characteristics obtained from these calculations will be used as material modeling data of full-rake collision analyses.

  • PDF

Vehicle Dynamic Simulation Including an Artificial Neural Network Bushing Model

  • Sohn, Jeong-Hyun;Baek-Woon-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.255-264
    • /
    • 2005
  • In this paper, a practical bushing model is proposed to improve the accuracy of the vehicle dynamic analysis. The results of the rubber bushing are used to develop an empirical bushing model with an artificial neural network. A back propagation algorithm is used to obtain the weighting factor of the neural network. Since the output for a dynamic system depends on the histories of inputs and outputs, Narendra algorithm of 'NARMAX' form is employed to consider these effects. A numerical example is carried out to verify the developed bushing model. Then, a full car dynamic model with artificial neural network bushings is simulated to show the feasibility of the proposed bushing model.

진동-음향 연성계의 구조-유체 상호작용 (Structure-Fluid Interaction in a Coupled Vibroacoustic System)

  • 최성훈;김진오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.135-141
    • /
    • 1996
  • Numerical analysis techniques have been applied to obtain the vibroacoustic characteristics of the simplified model of a passenger-car cabin. Two kinds of coupled vibration-acoustic analysis, such as one-way coupling and full coupling, have been carried out via the interface between the results of vibration analysis by FEM and acoustic analysis by BEM. The comparison of two coupled analysis results show the fluid-structure interaction in terms of the coupled effect of the vibration and noise.

  • PDF

Yaw Rate 및 Side Slip Angle 추정을 위한 비선형 관측기 설계 (Design of Non-linear Observer to Estimate Yaw Rate and Sidel Slip Angle)

  • 송정훈
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.48-53
    • /
    • 2012
  • A non-linear vehicle model and an observer are designed to observe the yaw rate and the body side slip angle when a vehicle is turning maneuver in this study. The developed vehicle model is a full car model and has fourteen degree of freedom. A Luenberg observer is applied to develop the observer. The vehicle model is validated with a reference result and shows good accordance. The observer is tested on dry asphalt, wet asphalt and snow paved road. The results prove the performance of observer is robust and reliable.

우등버스용 MR 댐퍼의 실험적 모델링 (Experimental Modeling of MR Damper for Cruise Bus)

  • 손정현;전철웅
    • 대한기계학회논문집A
    • /
    • 제35권8호
    • /
    • pp.863-867
    • /
    • 2011
  • 본 논문에서는 우등버스용 MR 댐퍼의 특성 시험 결과를 분석하고, 비선형 히스테리시스 특성을 모델링할 수 있는 실험적 모델링이 제시된다. MR 댐퍼의 인가전류에 따른 실험적 모델을 구성하고, 매트랩의 최적설계 툴 박스를 이용하여 계수를 규명한다. 우등버스의 전차량 시뮬레이션을 통하여 차량동역학 해석용 MR 댐퍼의 실험적 모델의 유용성을 검증한다.

다물체동역학기법을 이용한 고급버스의 전차량 시뮬레이션과 시험의 매칭 (Matching Simulations with Tests of Cruise Bus Using Multi-body Dynamics Technology)

  • 최소해;박성준;이정한;유완석;손정현
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.14-22
    • /
    • 2010
  • In this study, a large bus is tested for measuring the steering response based on the slarom test and step steer test. A full car model by using ADAMS/Car is established for computer simulation. For bus modeling, user defined templates are made and used in the simulation. Simulation results according to the slarom and step steer test are compared to the physical experiments, in which several sensors are installed to measure vehicle responses. The results obtained from the comparison show a good agreement with regard to the vehicle velocity and steering angle.

현가장치 기구정역학 시험에 의한 차량동역학 모델링 및 시험검증 (Vehicle Dynamics Modeling and Correlation Using the Kinematic and Compliance Test of the Suspension)

  • 김상섭;정홍규
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.109-118
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of field test results and simulation results of the ADAMS/Car demonstrates the validity of the proposed functional suspension modeling method. This model is suitable for real-time vehicle dynamics analysis.

부동피스톤과 스프링을 갖는 반능동 ER댐퍼의 성능평가 (Performance Evaluation of a Semi-Active ER Damper with Free Piston and Spring)

  • 최승복;김완기
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.691-700
    • /
    • 2000
  • This paper presents a novel type of a semiactive damper featuring an electro-rheological(ER) fluid. Unlike conventional cylindrical ER damper, the proposed one has controllable orifices by the intensity of electric fields (We call it orifice type). The dynamic model of the orifice type ER damper is formulated by incorporating field-dependent Bingham properties of an arabic gum-based ER fluid. Design parameters such as electrode gap are subsequently determined on the basis of the dynamic model. After manufacturing the orifice type ER damper, field-dependent damping forces and damping force controllability are empirically evaluated. In the evaluation procedure, conventional cylindrical ER damper is adopted and its performance characteristics are compared with those of the orifice type ER damper. In addition, the proposed one is installed with a full-car model and its vibration control performance associated with a skyhook controller is investigated.

반응 표면 분석법을 활용한 자동차용 현가스프링 최적화 설계 (Optimal design of car suspension springs by using a response surface method)

  • 유동우;김도엽;신동규
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.246-255
    • /
    • 2016
  • When spring of the suspension is exerted by an external load, a car should be designed to prevent predictable damages and designed for a ride comfort. We used experiments design to design VON-MISES STRESS and K, a constant, of spring of suspension which is installed in a car as a goal level. We analyzed the result from Edison's Elastic - Plastic Analysis SW(CSD_EPLAST) by setting D, d, n as external diameter of coil, internal diameter of coil, the number of total coil respectively. The experiment design let the outcome be as Full-second order by using Box-Behnken which is one of response surface methods. Experimented and analyzed results based on the established experiments design, We found out design parameter which has desired VON-MISES STRESS and the constant K. Additionally, we predicted life time of when the external load was exerted by repeated load by using fatigue equation, and verification of plastic deformation has also been made. Additionally we interpreted a model, which is formed by optimized design parameter, with linear analysis and non-linear analysis, at the same time we also analyzed plastic deformation with the values from the both models. Finally, we predicted fatigue life of optimized model by using fatigue estimation theory and also evaluated a ride comfort with oscillation analysis.

  • PDF