• Title/Summary/Keyword: a frequency response

Search Result 4,799, Processing Time 0.033 seconds

A Study on the Experiment of the Direct Digital Frequency Synthesizer for the Fast Frequency Hopping System (고속 주파수 호핑용 직접 디지틀 주파수 합성기의 실현에 관한 연구)

  • 설확조;김원후
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1986.10a
    • /
    • pp.28-34
    • /
    • 1986
  • The frequency synthesizer for Fast Frequency Hopping System musy be capable of a fast tuning with a small step frequency over wide band. The most conventional frequency synthesizer that uses the phase locked loop (PLL) enables the wide band problem but have a poor side of the low resolution and the transient response. In this paper, we have discussed the experimental results of a direct digital frequency synthesizer which can be applicable to the Fast Frequency Hopping System, using digital-to-analoq (D/A)conversion techniques. With this system we can find the merits of a fine resolution and the possibility of a fast tuning leaving the problems of transent frequency.

  • PDF

Dynamic behaviour of semi-rigid jointed cold-formed steel hollow frames

  • Joanna, P.S.;Samuel Knight, G.M.;Rajaraman, A.
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.513-529
    • /
    • 2006
  • This paper deals with the dynamic behaviour of cold-formed steel hollow frames with different connection stiffnesses. An analytical model of a semi-rigid frame was developed to study the influence of connection stiffnesses on the fundamental frequency and dynamic response of the frames. The flexibilities of the connections are modeled by rotational springs. Neglect of semi-rigidity leads to an artificial stiffening of frames resulting in shorter fundamental period, which in turn results in a significant error in the evaluation of dynamic loads. In the seismic design of structures, of all the principal modes, the fundamental mode of translational vibration is the most critical. Hence, experiments were conducted to study the influence of the connection stiffnesses on the fundamental mode of translational vibration of the steel hollow frames. From the experimental study it was found that the fundamental frequency of the frames lie in the semi-rigid region. From the theoretical investigation it was found that the flexibly connected frames subjected to lateral loads exhibit larger deflection as compared to rigidly connected frames.

Vertical Vibration Analysis of Single Pile-Soil Interaction System Considering the Interface Spring (접합면 스프링요소를 고려한 단말뚝-지반 상호작용계의 수직진동해석)

  • 김민규;김문겸;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.106-113
    • /
    • 2002
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used for a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted for soil. These two fields are coupled using FE-BE coupling technique In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, the dynamic response analyses of interface spring elements are performed. As a result, less spring stiffness makes the natural frequency decrease and the resonant amplitude increase.

  • PDF

A Study on the Vibrational Characteristics of the Continuous Circular Cylindrical Shell with the Multiple Supports Using the Experimental Modal Analysis (실험모드해석에 의한 다점지지된 연속원통셸의 진동특성에 관한 연구)

  • 한창환;이영신
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.43-51
    • /
    • 2001
  • An experimental modal analysis is the process to identify structure's dynamic characteristics such as resonant frequencies, damping values and mode shapes. An experimental model was made of stainless steel in the shape of a circular cylindrical shell and installed on the test bed with jigs. For investigating vibrational characteristics of the continuous circular cylindrical shell with intermediate supports, modal testing is performed by using impact hammer, accelerometer and 8-channel FFT analyzer. The frequency response function(FRF) measurements are also made on the experimental model within the frequency range from 0 to 4kHz. Modal parameters are identified from resonant peaks in the FRF's and animated deformation patterns associated with each of the resonances are shown on a computer screen. The experimental results are compared with analytical and FEA results.

  • PDF

Vibration Characteristics of the Tower Structure of a 750kW Wind Turbine Generator (750kW 풍력발전기 타워 구조의 진동 특성)

  • Kim, Seokhyun;Nam, Y.S.;Eun, Sungyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.219-224
    • /
    • 2005
  • Vibration response of the tower structure of a 750kW wind turbine (W/T) generator is investigated by measurement and analysis. Acceleration response of the W/T tower under various operation condition is monitored in real time by the vibration monitoring system using LabVIEW. Resonance state of the tower structure is diagnosed in the operating speed range. Resonance frequency range of the test model is investigated with the wind speed data of the test site. To predict the tower resonance frequency, tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. Calculated tower bending frequency is in good agreement with the measured value and the result shows that the simplified model can be used in the design stage of the W/T tower.

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.130-135
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using flexible muitibody dynamic analysis and finite element one. This method is executed in 3 steps. In the la step, time dependent quantities such as dynamic loads, modal coordinates ana gross body motion of the flexible body are calculated efficiently through flexible multibody dynamic analysis. And frequency response functions are computed using Fourier transforms of those time dependent quantities. In the 2$\^$nd/ step, acoustic pressure coefficients are obtained through structure-acoustic coupling analysis by finite element analysis. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

  • PDF

Experimental Evaluation of Modal Properties for Estimation of the Railway Bridge Dynamic Performance (철도교량 동적성능 평가를 위한 동특성 추출 실험연구)

  • Kim Sung-Il;Kim Nam-Sik;Lee Jung-Whee;Lee Pil-Goo
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.211-216
    • /
    • 2005
  • Resonance of railroad bridge can be broken out when natural frequency of the bridge coincides with exciting frequency of moving forces. In order to avoid aforementioned unpleasant response of the structure, exact determination of dynamic structural properties is important to understand dynamic behavior of the structure under moving train loads. In the present paper, a 25 meters long full scale IPC girder and 15m Precom girder models were fabricated as a test specimen and modal testing was carried out to evaluate modal parameters including natural frequencies and modal damping ratios. In the modal testing, a digitally controlled vibration exciter as well as an impact hammer is applied to obtain frequency response functions more exactly and the modal parameters are evaluated varying with structural status.

  • PDF

Vibration Characteristics of the Tower Structure of a 750kW Wind Turbine Generator (750kW 풍력발전기 타워 구조의 진동 특성)

  • Kim, Seock-Hyun;Nam, Y.S.;Eun, Sung-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.429-434
    • /
    • 2004
  • Vibration response of the tower structure of a 750kW wind turbine generator is investigated by measurement and analysis. Acceleration response of the tower under various operation condition is monitored in real time by vibration monitoring system using LabVIEW. Resonance state of the tower structure is diagnosed in the operating speed range. To predict the tower resonance frequency, tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. Calculated tower bending frequency is in good agreement with the measured value and the result shows that the simplified model can be used in the design stage of the wind turbine tower.

  • PDF

Dynamic Behavior of Rotor in Switched Reluctance Motor Due to Unbalanced Mass (질량 불평형에 의한 SRM 회전자의 동적 거동에 관한 연구)

  • Ha, Gyeong-Ho;Hong, Jeong-Pyo;Kim, Gyu-Taek;Jang, Gi-Chan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.305-312
    • /
    • 2000
  • This study deals with the dynamic response of a rotor in Switched Reluctance Motor(SRM) caused by the unbalance force such as the unbalanced mass and electromagnetic force. The method to analyze the mechanical response of the rotor supported on the bearing is based on an extension of the 3-dimensional Transfer Matrix Method(TMM) coupled with the electromagnetic force calculated by Maxwell stress tensor. The displacement of the rotor as a function of frequency according to the position of the unbalanced mass is evaluated from the frequency response function (FRF). The rotor behaviour with the electromagnetic force is compared with that without the electromagnetic force. In addition, the resonance speeds and the vibration modes are analyzed and demonstrated in this paper. These results are useful in designing the mechanical rotor and in balancing properly the rotor to reduce vibration and noise.

  • PDF

A Study on the Acceleration Response Amplification Ratio of Buildings and Non-structural Components Considering Long-Period Ground Motions (장주기 지진동을 고려한 건축물 및 비구조요소의 가속도 응답 증폭비)

  • Oh, Sang Hoon;Kim, Ju Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Structures of high-rise buildings are less prone to earthquake damage. This is because the response acceleration of high-rise buildings appears to be small by generally occurring short-period ground motions. However, due to the increased construction volume of high-rise buildings and concerns about large earthquakes, long-period ground motions have begun to be recognized as a risk factor for high-rise buildings. Ground motion observed on each floor of the building is affected by the eigenmode of the building because the ground motion input to the building is amplified in the frequency range corresponding to the building's natural frequency. In addition, long-period components of ground motion are more easily transmitted to the floor or attached components of the building than short-period components. As such, high-rise buildings and non-structural components pose concerns about long-period ground motion. However, the criteria (ASCE 7-22) underestimate the acceleration response of buildings and non-structural components caused by long-period ground motion. Therefore, the characteristics of buildings' acceleration response amplification ratio and non-structural components were reviewed in this study through shake table tests considering long-period ground motions.