• 제목/요약/키워드: a frequency response

검색결과 4,789건 처리시간 0.03초

오디오 이퀄라이저를 위한 주파수 응답의 고속 그래픽 표현 방법 (Fast Graphic Visualization of Frequency Response for Audio Equalizer)

  • 김기준;박호종
    • 방송공학회논문지
    • /
    • 제20권4호
    • /
    • pp.632-640
    • /
    • 2015
  • 본 논문에서는 오디오 이퀄라이저의 정확한 주파수 응답을 그래픽으로 빠르게 표현하는 방법을 제안한다. 주파수 축을 로그 스케일로 나타낼 경우 저대역의 정확한 주파수 응답을 표현하기 위하여 높은 해상도로 주파수 응답을 구해야 한다. 그러나 높은 해상도의 주파수 응답을 구하기 위해 많은 계산량이 필요하고, 이에 따라 주파수 응답의 그래픽 표현을 실시간으로 제공하기 어렵다. 이와 같은 계산량 문제를 해결하기 위하여 본 논문에서는 낮은 해상도로 중대역에서 구한 가상 주파수 응답을 이용하는 방법을 제안한다. 이퀄라이저를 구성하는 각 필터에 대하여 중대역에서 가상 주파수 응답을 구한 후 원하는 주파수 위치로 이동하여 해당 필터의 주파수 응답을 구하고, 모든 필터의 주파수 응답을 결합하여 이퀄라이저의 최종 주파수 응답을 구한다. 실험을 통하여 제안한 방법으로 구한 주파수 응답이 많은 계산량을 사용하여 높은 해상도로 구한 주파수 응답과 동등한 모양을 가지는 것을 확인하였다.

Volterra급수로 나타낸 비선형시스템 주파수응답함수의 수렴특성 (Convergence Characteristics of the Frequency Response Functions of Non-Linear Systems Expressed in Terms of the Volterra Series)

  • 이건명
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1901-1906
    • /
    • 1995
  • The frequency response functions of systems incorporating a non-linear cubic stiffness subject to sinusoidal excitation are derived using the Volterra series and the convergence characteristics investigated. It is shown that the series representation of the frequency response functions converges only when the sinewave input amplitude is within a certain range. Within the range of convergence the frequency response function based on the Volterra series approaches the analytical one as more higher order frequency response function terms are included. Proposed is a criterion for the studies systems to predict approximately the range of sinewave input amplitude for which the series representation of the frequency response functions converges.

서보밸브의 주파수 응답 신호에 관한 연구 (A Study on the Frequency Response Signals of a Servo Valve)

  • 윤홍식;김성동
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권1호
    • /
    • pp.17-23
    • /
    • 2021
  • The flow signal or spool position signal is used to determine the dynamic characteristics of directional control valves. Alternatively, the signal of spool position or flow can be replaced with the velocity of a low friction, low inertia actuator. In this study, the frequency response of the servo valve equipped with a spool position transducer is measured with a metering cylinder. The input signal, spool displacement, load pressure, and velocity of the metering cylinder are measured, and the theoretical results from the transfer function analysis are verified. The superposition rule for magnitude ratio and phase angle was found to be always applicable among any signal type, and it was found that the load pressure signal is not appropriate for use as the signal for measuring the frequency response of a servo valve. It was confirmed that the frequency response of a servo valve using metering cylinder was similar to the results from a spool displacement signal. The metering cylinder used for measuring the frequency response of a servo valve should be designed to have sufficiently greater bandwidth frequency than the bandwidth frequency of the servo valve.

Criteria for processing response-spectrum-compatible seismic accelerations simulated via spectral representation

  • Zerva, A.;Morikawa, H.;Sawada, S.
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.341-363
    • /
    • 2012
  • The spectral representation method is a quick and versatile tool for the generation of spatially variable, response-spectrum-compatible simulations to be used in the nonlinear seismic response evaluation of extended structures, such as bridges. However, just as recorded data, these simulated accelerations require processing, but, unlike recorded data, the reasons for their processing are purely numerical. Hence, the criteria for the processing of acceleration simulations need to be tied to the effect of processing on the structural response. This paper presents a framework for processing acceleration simulations that is based on seismological approaches for processing recorded data, but establishes the corner frequency of the high-pass filter by minimizing the effect of processing on the response of the structural system, for the response evaluation of which the ground motions were generated. The proposed two-step criterion selects the filter corner frequency by considering both the dynamic and the pseudo-static response of the systems. First, it ensures that the linear/nonlinear dynamic structural response induced by the processed simulations captures the characteristics of the system's dynamic response caused by the unprocessed simulations, the frequency content of which is fully compatible with the target response spectrum. Second, it examines the adequacy of the selected estimate for the filter corner frequency by evaluating the pseudo-static response of the system subjected to spatially variable excitations. It is noted that the first step of this two-fold criterion suffices for the establishment of the corner frequency for the processing of acceleration time series generated at a single ground-surface location to be used in the seismic response evaluation of, e.g. a building structure. Furthermore, the concept also applies for the processing of acceleration time series generated by means of any approach that does not provide physical considerations for the selection of the corner frequency of the high-pass filter.

MEMS 공진기의 고주파 응답해석을 위한 고효율 해석기 (A high Efficient Solver for High-Frequency Response Analysis of MEMS Resonators)

  • 고진환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.467-472
    • /
    • 2007
  • A modern MEMS resonator is a micro-scale structure operated over a high frequency range. In order to predict its resonant behavior in a design process, High-frequency response analysis (Hi-FRA) is demanded. Algebraic substructuring (AS) is known as a fast numerical technique to construct an eigenspace for FR and frequency sweep (FS) algorithm efficiently solves the frequency response system projected on the eigenspace. However, the existing FS algorithm using AS is developed for low-FRA, say over the range 1Hz-2KHz. In this work, we extend the FS algorithm using AS for FRA over an arbitrary frequency range. Therefore, it can be efficiently applied to systems operated at a high frequency, say over the range 230MHz-250MHz. The success of the proposed method is demonstrated by Hi-FRA of a checkerboard resonator.

  • PDF

기체 전달 관로에 있어서 압력 전파의 주파수 응답에 대한 부하 임피던스의 영향 (The Effect of Load Impedances on the Frequency Response of Pressure Propagation in the Pneumatic Transmission Line)

  • 윤선주;손병진
    • 설비공학논문집
    • /
    • 제6권4호
    • /
    • pp.344-353
    • /
    • 1994
  • This study numerically analyzed the dynamic characteristics of the frequency response on the pneumatic transmission line with load impedances. The pressure transfer function is represented by the distributed parameter line model. To validate the mathematical approximations of Bessel function ratios, the results of frequency response in a blocked line were compared with those obtained by the Infinite-product, Brown's and Square-root approximations. Special emphasis was given to the frequency response characteristics on the pneumatic transmission line with load impedances. Computations were carried out for the wide range of parameters in terms of load capacitance ratio and load resistance ratio. The present results indicated that the theoretical model is capable of accurately predicting the frequency response characteristics for any configuration of a fluid transmission line.

  • PDF

정전 용량형 MEMS 공진기의 비이상적 주파수 응답 모델링 (Modeling of non-ideal frequency response in capacitive MEMS resonator)

  • 고형호
    • 센서학회지
    • /
    • 제19권3호
    • /
    • pp.191-196
    • /
    • 2010
  • In this paper, modeling of the non-ideal frequency response, especially "notch-and-spike" magnitude phenomenon and phase lag distortion, are discussed. To characterize the non-ideal frequency response, a new electro-mechanical simulation model based on SPICE is proposed using the driving loop of the capacitive vibratory gyroscope. The parasitic components of the driving loop are found to be the major factors of non-ideal frequency response, and it is verified with the measurement results.

유압 회로 해석 모듈을 이용한 주파수 응답 해석에 관한 연구 (A Study on Analysis of Frequency Response with Hydraulic Circuit Analysis Module)

  • 전봉근;송창섭;이용주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.581-584
    • /
    • 1995
  • The frequency response of a electro-hydraulic servo(EHS) system is studied. The frequensy response characteristics of the EHS system obtained by linerization method, nonlinerar simulation method, and experimentation are compared ane another. It is found that the frequency response of the EHS is consistent when input signal applied is very small, but that is deviated as input signal becomes large.

  • PDF

A natural frequency sensitivity-based stabilization in spectral stochastic finite element method for frequency response analysis

  • Lee, Gil-Yong;Jin, Seung-Seop;Park, Yong-Hwa
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.311-325
    • /
    • 2020
  • In applying the spectral stochastic finite element methods to the frequency response analysis, the conventional methods are known to give unstable and inaccurate results near the natural frequencies. To address this issue, a new sensitivity based stabilized formulation for stochastic frequency response analysis is proposed in this paper. The main difference over the conventional spectral methods is that the polynomials of random variables are applied to both numerator and denominator in approximating the harmonic response solution. In order to reflect the resonance behavior of the structure, the denominator polynomials is constructed by utilizing the natural frequency sensitivity and the random mode superposition. The numerator is approximated by applying a polynomial chaos expansion, and its coefficients are obtained through the Galerkin or the spectral projection method. Through various numerical studies, it is seen that the proposed method improves accuracy, especially in the vicinities of structural natural frequencies compared to conventional spectral methods.

자동차용 현가장치의 성능감도해석에 의한 안정승차영역의 결정 (Sweet Area Determination by Performance Sensitivity Analysis for an Automotive Vehicle Suspension)

  • 박호;한창수;김병우;김동규
    • 한국공작기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.92-100
    • /
    • 2003
  • Using a quarter car model, an analytic method for performance estimation of a vehicle suspension system with respect to frequency response, RMS response and performance index is presented. From frequency response function, compromization of response performance to the whole frequency range is verified and from RMS response and performance index, sensitivity of ride md handling characteristics are examined. Using a full car model, sweet area(stable ride area) are determined and performance sensitivity is estimated according to the change of feedback gains. In order to esimate the output sensitivity, response we is displayed using a 3-dimensional contour plot. Design data n suggested for optimal design parameter esimation, which maximize the performance of the given suspension system.