• Title/Summary/Keyword: a forward kinematics

Search Result 147, Processing Time 0.029 seconds

Study on Kinematic Calibration Method of Stewart Platforms (스튜어트 플랫폼의 기구학적 교정기법에 관한 연구)

  • Goo, Sang-Hwa;Son, Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.168-172
    • /
    • 2001
  • The accuracy problem of robot manipulators has long been one of the principal concerns in robot design and control. A practical and economical way of enhancing the manipulator accuracy, without affecting its hardware, is kinematic calibration. In this paper an effective and practical method is presented for kinematic calibration of Stewart platforms. In our method differential errors in kinematical parameters are linearly related to differential errors in the platform pose, expressed through the forward kinematics. The algorithm is tested using simulated measurement in which measurement noise is included.

  • PDF

Development of the Robot Manipulator for Kinematies (기구학적 분석을 이용한 로봇 매니퓰레이터 개발)

  • Min, Byeong-Ro;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This study is kinematics for the manipulator development of cucumber harvesting. A theory value was verified by repeated error measurement after the forward kinematics or inverse kinematics analysis of manipulator. Manipulator is consisted of one perpendicular link and two revolution link. The transformation of manipulator can be valued by kinematics using Denavit-Hartenberg parameter. The value of inverse kinematics which is solved by three angles faction shows two types. Repeated errors refered maximum 2.60 mm, 2.05mm and 1.55 mm according to X, Y, Z axis. In this study, the actual coordinates of maximum point and minimum point were agreement in the forward kinematics or inverse kinematics. The results of repeated error measurement were reflect to be smaller compared to a diameter of cucumber. measurement errors were determined by experimented errors during the test. For reducing errors of manipulator and improving work efficiency, the number of link should be reduced and breeding and cultural environment should be considered to reduce the weight and use the hard stuff. The velocity of motor for working should be considered, too.

The Estimation for the Forward Kinematic Solution of Stewart Platform Using the Neural Network (신경망 기법을 이용한 스튜어트 플랫폼의 순기구학 추정)

  • Lee, Hyung-Sang;Han, Myung-Chul;Lee, Min-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.186-192
    • /
    • 1999
  • This paper introduces a study of a method for the forward kinematic analysis, which finds the 6 DOF motions and velocities from the given six cylinder lengths in the Stewart platform. From the viewpoints of kinematics, the solution for the inverse kinematic is easily found by using the vectors of the links which are composed of the joint coordinates in base and plate frames, to act contrary to the serial manipulator, but forward kinematic is difficult because of the nonlinearity and complexity of the Stewart platform dynamic equation with the multi-solutions. Hence we, first in this study, introduce the linear estimator using the Luenberger's observer, and the estimator using the nonlinear measured model for the forward kinematic solutions. But it is difficult to find the parameter of the design for the estimation gain or to select the estimation gain and the constant steady state error exists. So this study suggests the estimator with the estimation gain to be learned by the neural network with the structure of multi-perceptron and the learning method using back propagation and shows the estimation performance using the simulation.

  • PDF

An Algorithm for Workspace of Human Model using the joint limit angle (관절의 한계 각도를 고려한 인체모델의 Workspace 생성 알고리즘)

  • Yoon Seok-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.171-177
    • /
    • 2005
  • This paper describes the method of calculating coordinate using Forward Kinematics and expresses the recursive equation as the numerical formula using a homogeneous coordinate for creating workspace. This paper proposes an algorithm for the workspace of human model using the recursive equation and the joint limit angle of human model, and describes the results of workspace of the human model as computer graphics.

  • PDF

The Effects of Head Position in Different Sitting Postures on Muscle Activity with/without Forward Head and Rounded Shoulder

  • Nam, Ki-Seok;Kwon, Jung-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.3
    • /
    • pp.140-146
    • /
    • 2014
  • Purpose: Differences in scapular kinematics and muscle activity appear in the forward head and rounded shoulder posture (FHRSP). Thus, the aim of this study was to investigate the following effects according to different postures on scapular kinematics and muscle activity around scapular region in individuals with and without FHRSP during overhead reaching task. Methods: Thirty pain-free subjects with/without FHRSP participated in this study. All subjects were positioned into three positions: habitual head posture (HHP), self-perceived ideal head posture (SIHP) and therapist-perceived neutral head posture (TNHP). Muscle activities of upper trapezius (UT), lower trapezius (LT) and serratus anterior (SA) were measured during overhead reaching task. Results: Muscle activity of trapezius muscle (UT and LT) during HHP was significantly higher than SIHP and TNHP in FHRSP group (p<0.05), but there was no difference between SIHP and TNHP. SA also significantly increased muscle activity in HHP more than SIHP and TNHP in FHRSP group (p<0.05), but there was no significant difference between SIHP and TNHP. In Non-FHRSP group, although there was a tendency of different muscle activities among three postures, it was not statistically significant. Conclusion: This result demonstrates that muscle activity associated with overhead reaching task is increased in HHP which affects the scapular kinematics and SIHP contributes changed scapular kinematics and proper recruitment of muscle activity in FHRSP similarly to TNHP.

Direct Position Kinematics Solution For Casing Oscillator Using the Kinematic Inversion (기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석)

  • 백재호;배형섭;이은준;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.580-583
    • /
    • 2002
  • This paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators, which is convenient and intuitionistic to us. A class of 3-RSR parallel manipulator is considered here. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics. The closed-form solution contains two different meanings-analytical and real-time. So we reach the goal of practical application and control. A numerical example is also presented and are verified by an inverse kinematics analysis. It shows that the method has a practical value for real-time control.

  • PDF

Full Pose Measurement of a Robot by the Wire Parallel Mechanism (와이어 병렬 메카니즘에 의한 로봇의 완전 자세 측정)

  • Jeong, Jae Won;Kim, Soo Hyun;Kwak, Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.134-142
    • /
    • 1997
  • In this study, we proposed the wire parallel mechanism that can be used to measure a full pose of a robot. It is composed of six parallel links using wire. The position and orientation of the end effectorf of a robot are calculated using the length of wires which is measured by the encoder. The complex non- linear equations of the forward kinematics are solved by using a numerical method, and the unique solution is obtained from the geometric configuration of the device. The length error of the wire which occurs in static condition is compensated by the relational equation that considered longitudinal extension and defoection of the wire. Through this work, we known that the proposed device has a good accuracy( .+-. 0.01mm) in a large measuring region, so it can be used effectively in a callibration of a robot which required a low cost.

  • PDF

Design and Control of X-ray Permeable Teleoperated Stewart Platform for Fracture Surgery (골절 수술용 엑스레이 투과 원격조종 스튜어트 플랫폼의 설계 및 제어)

  • Yoo, Byeongjun;Kim, Hyemi;Lee, Sung-Hak;Lim, Sunho;Park, Tae Gon;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.660-666
    • /
    • 2015
  • To avoid radiation exposure from repeated x-rays taken during orthopedic surgery, an x-ray permeable teleoperated Stewart platform for orthopedic fracture surgery was developed. This system is composed of a user interface device and a teleoperated operational robot, both of which use a Stewart platform mechanism. The links of the operational robot are made from an x-ray permeable material, polycarbonate, to minimize the interference. The forward and inverse kinematics algorithm applied and the structural reliability were both verified through an analysis using commercial engineering software. To monitor the operating status in real time and stop the device during an emergency, a monitoring software was developed. The performance of the x-ray permeable teleoperated Steward platform was validated experimentally.