• Title/Summary/Keyword: a force and torque sensor

Search Result 114, Processing Time 0.02 seconds

Design of a 6-axis Compliance Device with F/T Sensing for Position/Force Control (위치/힘 동시제어를 위한 F/T측정 기능을 갖는 6축 순응기구 설계)

  • Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2018
  • In this paper, the design of a novel 6-axis compliance device with force/torque sensing capability and the experiment results on force measurement are presented. Unlike the traditional control methods using a force/torque sensor with very limited compliance, the force control method employs a compliant device to provide sufficient compliance between an industrial robot and a rigid environment for more stable force control. The proposed compliance device is designed to have a diagonal stiffness matrix at the tip and uses strain gauge measurement which is robust to dust and oil. The measurement circuit is designed with low-cost IC chips however the force resolution is 0.04N.

Speed Sensorless Torque Monitoring Of Induction Spindle Motor On Machine Tool (공작기계 주축 유도전동기의 속도 센서리스 토크 감시)

  • 홍익준;권원태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.18-23
    • /
    • 2002
  • In this paper, The torque of CNC spindle motor during machining is estimated without speed measuring sensor. The CNC spindle system is divided into two parts, the induction spindle motor part and mechanical part. In mechanical part the variation of the frictional force due to the increment of the cutting torque and the effect of damping coefficient is investigated. Damping coefficient is found to be a function of spindle speed and not influenced by the weight of the load, while frictional force is a function of both the cutting torque and spindle speed. Experimental formulars are drawn for damping coefficient as a function of spindle speed and frictional force as a function of both cutting torque and spindle speed respectively, to estimate the cutting torque accurately. Graphical programming is used to implement the suggested algorithm, to monitor the torque of an induction motor in real time. Torque of the spindle induction motor is well monitored with 3% error range under various cutting conditions.

  • PDF

Tractive Force Estimation in Real-time Using Brake Gain Adaptation (브레이크 게인 적응기법을 이용한 종방향 타이어 힘의 실시간 추정)

  • ;;Karl Hedrick
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.214-219
    • /
    • 2003
  • This paper includes real-time tractive force estimation method using standard vehicle sensors such as wheel speed, brake pressure, throttle position, engine speed, and transmission carrier speed sensor. Engine map, torque converter lookup table, shaft torque observer, and brake gain adaptation method are used to estimate the tractive force. To verify this estimator, measurement which uses strain-based brake torque sensor and estimation results are presented. All results was performed using a real vehicle in a real-time.

Design of an Elbow Rehabilitation Robot based on Force Measurement and its Force Control (힘측정기반 팔꿈치 재활로봇 설계 및 힘제어)

  • Kim, Han-Sol;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.413-420
    • /
    • 2015
  • This paper describes the design of an elbow rehabilitation robot based on force measurement that enables a severe stroke patient confined to their bed to receive elbow rehabilitation exercises. The developed elbow rehabilitation robot was providewitha two-axis force/torque sensor which can detect force Fz and torque Tz, thereby allowing it to measure therotational force (Tz) exerted on the elbow and the signal force Fz which can be used as a safety device. The robot was designed and manufactured for severe stroke patients confined to bed, and the robot program was manufactured to perform flexibility elbow rehabilitation exercises. Asa result of the characteristics test of the developed rehabilitation robot, the device was safely operated while the elbow rehabilitation exercises were performed. Therefore, it is thought that the developed rehabilitation robot can be used for severe stroke patients.

Firctional Behavior and Indirect Cutting Force Measurement in a Machining Center Using Feed Motor Current (머시닝센터에서 이송전류신호를 이용한 이송계의 마찰특성 규명과 이를 고려한 절삭력의 간접측정)

  • 김기대;최영준;오영탁;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.78-87
    • /
    • 1997
  • In machine tools, frictional force exists between the table and the guideways, and in ballscrews. In this paper, feed motor current measured by a hall sensor is used to calculate the motor torque. Some frictional phenomena are studied in feed drive systems, such as the relationship between feedrate and frictional torque, and chip cover effects on frictional torque. Considering frictional phenomena, the relation- ship between the feed froce and the feed motor current id obtained. Feed force can be well estimated by feed motor current measurement considering frictional behavior. The relationship between the cutting force and the feed motor current is slightly different between up milling and down milling due to the effect of y direc- tional cutting force on frictional torque.

  • PDF

Human-oriented programming technology for articulated robots using a force/torque sensor

  • Kang, Hyo-Sig;Park, Jong-Oh;Baek, Yoon-Su
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.96-99
    • /
    • 1992
  • Currently, there are various robot programming methods for articulated robots. Although each method has merits and drawbacks, they have commonly weak points for practical application, and especially the weak point can be even more vulnerable when the robot programming requires the subtle feelings of human being. This is because the movement of a human being is synthetic while the robot programming is analytic. Therefore, the present method of programming has limits in performing these kinds of subtle robot movement. In this paper, we propose a direct robot programming method, which generates robot programs based on the force/torque vector applied to a force/torque sensor by the human operator. The method reduces the effort required in the robot programming.

  • PDF

Development of pushing force measuring system for coke oven machines using telemetry method (비 접촉원격 토오크 측정 시스템 개발)

  • 전종학;허윤기;최일섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1778-1781
    • /
    • 1997
  • The coke oven plant on a steel works has not, in the past, been regarded as a prime user of modern instrument technology. The reason for this perception may be due to the fact that the basic design of the coke battery has been changed little over the years. The recording and analysis of oven pushing force on a routine basis is seen as a means of monitoring plant operation. A torque sensor is set up at the shaft of the rotor for measuring pushing force. Pushing force data which is communicated form torque sensor to staor by telemetry method are shown on MMI(Man-Machine Interface) screen and stored in the database automatically. Perhaps the most important feature is that is allows a problem oven to be identified at an early stage and for corrective action to be taken before it develops into a refusal to push. In this way the mechanical loads imposed on the battery structlure can be held to a necessary minimum, so helping to prolong its service life.

  • PDF

A study on measuring friction vibration in flange area during deep drawing process (프레스 딥 드로잉 가공 시 플랜지부의 마찰진동 측정에 관한 기초연구)

  • Jae-Woong Yun
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.8-13
    • /
    • 2023
  • In this study, it was studied whether a new measurement factor "frictional vibration" that occurs due to the material flow of the die and sheet metal in the flange area during deep drawing process, could be measured using an vibration sensor. The blank holder force acting on the flange area during drawing processing acts as a friction force in the opposite direction into which the sheet material flows and causes friction vibration. As the blank holder force increases, the friction force increases, and as the blank holder force decreases, the friction force also decreases. Because of this, friction vibration also increases and decreases in proportion to the size of the blank holder force. According to this theory, whether frictional vibration occurs was measured using a flange simulator and a vibration sensor. The initial pressure was created using a torque wrench, and it was confirmed that the amplitude increased by about 4 times when torque 6 Nm was increased. When the forming velocity was rapidly changed to 300 mm/min, the amplitude increased approximately 4 times. It was confirmed that the amplitude of frictional vibration according to the measurement location was greater the further away from the specimen. It was verified that a new measurement factor "friction vibration" in the flange area can be measured and used for online monitoring.

Design and evaluation of small size six-axis force/torque sensor using parallel plate sturcture (병렬판구조를 이용한 소형 6축 힘/토크센서의 설계 및 특성평가)

  • Joo, Jin-Won;Na, Gi-Su;Kim, Gap-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.353-364
    • /
    • 1998
  • This paper describes the design processes and evaluation results of a small-sized six-axis force/torque sensor. The new six-axis force/torque sensor including S-type structure has been developed using a parallel plate structure as a basic sensing element. In order tominimize coupling errors, the location of strain gages has been determined based on the finite element analysis and the connections of strain gages have been made such that the bridge circuit with 4 strain gages becomes balanced. Several design modifications result in a similar strain sensitivity for six-axis forces and moments, and the reduced coupling errors of 2.6% FS between each forces and moments. Calibration test results show that the six-axis load cell developed which has light weight of 135g and the maximum capacities of 196 N in forces and 19.6 N.m in moments is estimated to be within 7.1% FS in coupling error.

Speed Sensorless Torque Monitoring During Machining on CNC Lathe (CNC 선반가공 중 속도 센서리스 토크 감시)

  • Hong, Ik-Jun;Kwon, Won-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.222-229
    • /
    • 2004
  • In this paper, the torque of CNC spindle motor during machining is estimated without speed measuring sensor. The CNC spindle system is divided into two parts, the induction spindle motor part and mechanical part. In mechanical part, the variation of the frictional force due to the increment of the cutting torque and the effect of damping coefficient is investigated. Damping coefficient is found to be a function of spindle speed and not influenced by the weight of the load, while frictional force is a function of both the cutting torque and spindle speed. Experimental equations are drawn for damping coefficient and Coulomb friction as a function of spindle speed. Incremental frictional torque Is also obtained as a function of both cutting torque and spindle speed. Graphical programming is used to implement the suggested algorithm to monitor the torque of an induction motor in real time. Torque of the spindle induction motor is estimated well in about average 3% error range under various cutting conditions.