• Title/Summary/Keyword: a finite-element solver

Search Result 156, Processing Time 0.023 seconds

A study on 2D/3D analysis for 2014 Inha Human Power Aircraft main spar (2014년 인하대학교 인력항공기 Main spar의 2차원/3차원의 해석 비교 및 설계초기단계 적용가능성 연구)

  • Lee, Ye-Ho;Yoon, Do-Hee
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.268-268
    • /
    • 2016
  • 기계적 장치의 도움 없이 오직 사람의 힘으로만 비행을 해야 하는 인간 동력 항공기는 높은 동력 효율 및 최소한의 무게를 지니며 고세장비(High Aspect Ratio)날개 특성을 가지고 있다. 따라서 공력 및 구조적 최적화가 필요하며 고세장비 날개 특성에 따른 대변위 해석이 필요하다. 비행가능한 특정 순항속도에서 3차원 날개에 작용하는 양력에 대해, Edison Solver(Educational program for finite element analysis (CASADSolver))를 이용하여 2차원 spar에 분포하중으로 적용하였을 때의 응력 분포 및 끝단 변위 분석하고자 한다. 또한, 2차원 spar에 일정한 간격으로 집중하중을 작용하였을 때 생기는 변위와 3차원 spar를 이용한 하중해석 결과의 변위를 비교하고자 한다. 위의 두 분석 결과로 비교적 계산자원이 많은 3차원 해석이 아닌 2차원 해석으로 인간 동력 항공기 날개 설계 초기단계에 적용가능한 지에 대해 비교한다.

  • PDF

Linear Motor Design by using Topology Optimization (위상최적설계를 이용한 리니어 모터의 설계)

  • Lee, Heon;Kang, Je-Nam;Wang, Se-Myung;Hong, Eon-Pyo;Park, Kyeong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.843-845
    • /
    • 2003
  • In this paper, the design of the outer core which is one part of the linear motor is investigated by using the topology optimization and FEM. The object functions are to reduce the outer core area of the linear motor with the maximum magnetic energy in airgap. For topology optimization, the finite element model is made through the result of ANSYS, and the sensitivity calculation is done using ANSTOP(developed general software for topology optimization of electromagnetics). In ANSTOP, the optimization routine is implemented using SLP in DOT and the ANSYS is used as a function solver.

  • PDF

ResNet based solver for Poisson-Boltzmann equation (ResNet을 기반으로 한 Poisson-Boltmann 방정식의 풀이법)

  • Jo, Gwanghyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.216-217
    • /
    • 2022
  • Poisson-Boltzmann equation (PBD), which describes the effects of charges inside cells, plays important roles in various disciplinaries including biology. In this presentation, we introduce a ResNet based method to predict solution of PBE. First, we generate solutions of PBE based on FEM. Next, we train networks whose input shape includes location of charge and shape of cell and while output shape includes the electronic potential.

  • PDF

Safety Evaluate of Brackets for Bare Chassis of a 30-seated Bus

  • Choi, Wan-Mug
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.215-221
    • /
    • 2022
  • In the manufacturing process of the bus treated as the commercial vehicle, after making the bare chassis which is the basic frame of the vehicle body, the part in which passengers ride is connected. In addition, the necessary parts such as the engine and transmission required for the operation of the bus are connected to the bare chassis. The element connecting the parts such as the boarding part of the passengers, the engine, the suspension and the transmission is the bracket. The device required for driving and operating the vehicle is mounted on the bare chassis using the bracket, which should ensure stability during bus operation. In this study, we were performed stress analysis to evaluate the stability of three types of brackets connecting the bare chassis of a new type of 30-seater bus in the development process and components required for driving and operation. The stress analysis should be preceded by the analysis of boundary conditions considering the loads applied to the brackets according to the material of the bracket to be analyzed and the driving type of the bus. The finite element model for structural analysis of brackets according to the driving type of the bus was used by Altair's Hypermesh 2017, and the solver used for structural analysis was Altair's Optistruct. The stress analysis was performed to present the safe and vulnerable parts of the three brackets.

Progressive Damage and Failure Analysis of Open-Hole Composite Specimens Under Compressive Loading Using Finite Element Analysis (유한요소해석을 이용한 압축 하중을 받는 오픈 홀 복합재 시편의 점진적 손상 및 파손 분석)

  • Young Cheol Kim;Geunsu Joo;Hong-Kyu Jang;Jinbong Kim;Min-Gyu Kang;Woo-Kyoung Lee;Ji Hoon Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.303-309
    • /
    • 2023
  • In this paper, a Progressive Damage and Failure Analysis (PDFA) modeling method was developed using ABAQUS/EXPLICIT to predict in-plane damage and delamination for Open-Hole Compression (OHC) testing. The proposed PDFA model was constructed based on Hashin criteria and cohesive behavior. The strength and stiffness of OHC specimens with three types of stacking sequences [(45/-45/02)3]s , [(45/0/-45/90)3]s and [45/-45/0/45/-45/90/(45/-45)2]s were compared to comprehensively evaluate the validity of the Finite Element(FE) model of PDFA. The strength and stiffness of the OHC specimens were predicted relatively well, with less than a percentage error 10.0 %. For the numerical simulation case for each layup, the damage initiation/evolution of OHC specimens were evaluated for delamination and tension/compression matrix damage before and after failure.

Design criteria for birdstrike damage on windshield

  • Marulo, Francesco;Guida, Michele
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.2
    • /
    • pp.233-251
    • /
    • 2014
  • Each aircraft have to be certified for a specified level of impact energy, for assuring the capability of a safe flight and landing after the impact against a bird at cruise speed. The aim of this research work was to define a scientific and methodological approach to the study of the birdstrike phenomenon against several windshield geometries. A series of numerical simulations have been performed using the explicit finite element solver code LS-Dyna, in order to estimate the windshield-surround structure capability to absorb the bird impact energy, safely and efficiently, according to EASA Certification Specifications 25.631 (2011). The research considers the results obtained about a parametric numerical analysis of a simplified, but realistic, square flat windshield model, as reported in the last work (Grimaldi et al. 2013), where this model was subjected to the impact of a 1.8 kg bird model at 155 m/s to estimate the sensitivity of the target geometry, the impact angle, and the plate curvature on the impact response of the windshield structure. Then on the basis of these results in this paper the topic is focused about the development of a numerical simulation on a complete aircraft windshield-surround model with an innovative configuration. Both simulations have used a FE-SPH coupled approach for the fluid-structure interaction. The main achievement of this research has been the collection of analysis and results obtained on both simplified realistic and complete model analysis, addressed to approach with gained confidence the birdstrike problem. Guidelines for setting up a certification test, together with a design proposal for a test article are an important result of such simulations.

Dynamic Optimization of o Tire Curing Process for Product Quality (제품품질을 위한 타이어 가황공정의 동적 최적화)

  • Han, In-Su;Kang, Sung-Ju;Chung, Chang-Bock
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.321-331
    • /
    • 1999
  • The curing process is the final step in tire manufacturing whereby a green tire built from layers of rubber compounds is formed to the desired shape and the compounds are converted to a strong, elastic materials to meet tire performance needs under elevated pressure and temperature in a press. A numerical optimization procedure was developed to improve product quality in a tire curing process. First, a dynamic constrained optimization problem was formulated to determine the optimal condition of the supplied cure media during a curing process. The objective function is subject to an equality constraint representing the process model that describes the heat transfer and cures kinetic phenomena in a cure press and is subject to inequality constraints representing temperature limits imposed on cure media. Then, the optimization problem was solved to determine optimal condition of the supplied cure media for a tire using the complex algorithm along with a finite element model solver.

  • PDF

Combined multi-predict-correct iterative method for interaction between pulsatile flow and large deformation structure

  • Wang, Wenquan;Zhang, Li-Xiang;Yan, Yan;Guo, Yakun
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.361-379
    • /
    • 2012
  • This paper presents a fully coupled three-dimensional solver for the analysis of interaction between pulsatile flow and large deformation structure. A partitioned time marching algorithm is employed for the solution of the time dependent coupled discretised problem, enabling the use of highly developed, robust and well-tested solvers for each field. Conservative transfer of information at the fluid-structure interface is combined with an effective multi-predict-correct iterative scheme to enable implicit coupling of the interacting fields at each time increment. The three-dimensional unsteady incompressible fluid is solved using a powerful implicit time stepping technique and an ALE formulation for moving boundaries with second-order time accurate is used. A full spectrum of total variational diminishing (TVD) schemes in unstructured grids is allowed implementation for the advection terms and finite element shape functions are used to evaluate the solution and its variation within mesh elements. A finite element dynamic analysis of the highly deformable structure is carried out with a numerical strategy combining the implicit Newmark time integration algorithm with a Newton-Raphson second-order optimisation method. The proposed model is used to predict the wave flow fields of a particular flow-induced vibrational phenomenon, and comparison of the numerical results with available experimental data validates the methodology and assesses its accuracy. Another test case about three-dimensional biomedical model with pulsatile inflow is presented to benchmark the algorithm and to demonstrate the potential applications of this method.

Application of Parallel Processing System for free drop simulation of IT-related modules (IT 모듈의 자유 낙하 모사를 위한 병렬처리시스템의 적용)

  • Park Y.J.;Lee J.S.;Ko H.O.;Chang Y.S.;Choi J.B.;Kim Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.405-406
    • /
    • 2006
  • Recently, the flat display modules such as plasma or TFT-LCD employ thin crystallized panels which are normally weak to high level transient mechanical energy inputs. As a result, anti-shock performance is one of the most important design specifications for TFT-LCD modules. However, most of large display module designs are generated based on engineers own experiences. Also, a large-scale analysis to evaluate complex material and structural behaviors is one of interesting topic in diverse engineering and scientific fields. The utilization of massively parallel processors has also been a recent trend of high performance computing. The objective of this paper is to introduce a parallel process system which consists of general purpose finite element analysis solver as well as parallelized PC cluster. The parallel processing system is constructed using thirty-two processing elements and the finite element program is developed by adopting hierarchical domain decomposition method. In order to verify the efficiency of the established system, an impact analysis on thin and complex sub-parts of flat display modules is performed. The evaluation results showed a good agreement with the corresponding reference solutions, and thus, the parallel process system seems to be a useful tool fur the complex structural analysis such as IT related products.

  • PDF

An algorithm for quantifying dynamic buckling and post-buckling behavior of delaminated FRP plates with a rectangular hole stiffened by smart (SMA) stitches

  • Soltanieh, Ghazaleh;Yam, Michael C.H.
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.745-760
    • /
    • 2021
  • Dynamic buckling of structure is one of the failure modes that needs to be considered since it may result in catastrophic failure of the structure in a short period of time. For a thin fiber-reinforced polymer (FRP) plate under compression, buckling is an inherent hazard which will be intensified by the existence of defects like holes, cracks, and delamination. On the other hand, the growth of the delamination is another prime concern for thin FRP plates. In the current paper, reinforcing the plates against buckling is realized by using SMA wires in the form of stitches. A numerical framework is proposed to simulate the dynamic instability emphasizing the effect of the SMA stitches in suppressing delamination growth. The suggested algorithm is more accurate than the other methods when considering the transformation point of the SMA wires and the modeling of the cohesive zone using simple and yet reliable technique. The computational design of the method by producing the line by line orders leads to a simple algorithm for simulating the super-elastic behavior. The Lagoudas constitutive model of the SMA material is implemented in the form of user material subroutines (VUMAT). The normal bilinear spring model is used to reproduce the cohesive zone behavior. The nonlinear finite element formulation is programmed into FORTRAN using the Newmark-beta numerical time-integration approach. The obtained results are compared with the results obtained by the finite element method using ABAQUS/Explicit solver. The obtained results by the proposed algorithm and those by ABAQUS are in good agreement.