• Title/Summary/Keyword: a feature extraction

Search Result 2,185, Processing Time 0.026 seconds

A Study on On-line Recognition System of Korean Characters (온라인 한글자소 인식시스템의 구성에 관한 연구)

  • Choi, Seok;Kim, Gil-Jung;Huh, Man-Tak;Lee, Jong-Hyeok;Nam, Ki-Gon;Yoon, Tae-Hoon;Kim, Jae-Chang;Lee, Ryang-Seong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.94-105
    • /
    • 1993
  • In this paper propose a Koaren character recognition system using a neural network is proposed. This system is a multilayer neural network based on the masking field model which consists of a input layer, four feature extraction layers which extracts type, direction, stroke, and connection features, and an output layer which gives us recognized character codes. First, 4x4 subpatterns of an NxN character pattern stored in the input buffer are applied into the feature extraction layers sequentially. Then, each of feature extraction layers extracts sequentially features such as type, direction, stroke, and connection, respectively. Type features for direction and connection are extracted by the type feature extraction layer, direction features for stroke by the direction feature extraction layer and stroke and connection features for stroke by the direction feature extraction layer and stroke and connection features for the recongnition of character by the stroke and the connection feature extractions layers, respectively. The stroke and connection features are saved in the sequential buffer layer sequentially and using these features the characters are recognized in the output layer. The recognition results of this system by tests with 8 single consonants and 6 single vowels are promising.

  • PDF

Wafer Dicing State Monitoring by Signal Processing (신호처리를 이용한 웨이퍼 다이싱 상태 모니터링)

  • 고경용;차영엽;최범식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.70-75
    • /
    • 2000
  • After the patterning and probe process of wafer have been achieved, the dicing process is necessary to separate chips from a wafer. The dicing process cuts a wafer to lengthwise and crosswise direction to make many chips by using narrow circular rotating diamond blade. But inferior goods are made under the influence of complex dicing environment such as blade, wafer, cutting water and cutting conditions. This paper describes a monitoring algorithm using feature extraction in order to find out an instant of vibration signal change when bad dicing appears. The algorithm is composed of two steps: feature extraction and decision. In the feature extraction, two features processed from vibration signal which is acquired by accelerometer attached on blade head are proposed. In the decision. a threshold method is adopted to classify the dicing process into normal and abnormal dicing. Experiment have been performed for GaAs semiconductor wafer. Based upon observation of the experimental results, the proposed scheme shown a good accuracy of classification performance by which the inferior goods decreased from 35.2% to 12.8%.

  • PDF

Line feature extraction in a noisy image

  • Lee, Joon-Woong;Oh, Hak-Seo;Kweon, In-So
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.137-140
    • /
    • 1996
  • Finding line segments in an intensity image has been one of the most fundamental issues in computer vision. In complex scenes, it is hard to detect the locations of point features. Line features are more robust in providing greater positional accuracy. In this paper we present a robust "line features extraction" algorithm which extracts line feature in a single pass without using any assumptions and constraints. Our algorithm consists of five steps: (1) edge scanning, (2) edge normalization, (3) line-blob extraction, (4) line-feature computation, and (5) line linking. By using edge scanning, the computational complexity due to too many edge pixels is drastically reduced. Edge normalization improves the local quantization error induced from the gradient space partitioning and minimizes perturbations on edge orientation. We also analyze the effects of edge processing, and the least squares-based method and the principal axis-based method on the computation of line orientation. We show its efficiency with some real images.al images.

  • PDF

A Study on the Extraction of Feature Variables for the Pattern Recognition of Welding Flaws (용접결함의 형상인식을 위한 특징변수 추출에 관한 연구)

  • Kim, Jae-Yeol;Roh, Byung-Ok;You, Sin;Kim, Chang-Hyun;Ko, Myung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.103-111
    • /
    • 2002
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

Gesture Extraction for Ubiquitous Robot-Human Interaction (유비쿼터스 로봇과 휴먼 인터액션을 위한 제스쳐 추출)

  • Kim, Moon-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1062-1067
    • /
    • 2005
  • This paper discusses a skeleton feature extraction method for ubiquitous robot system. The skeleton features are used to analyze human motion and pose estimation. In different conventional feature extraction environment, the ubiquitous robot system requires more robust feature extraction method because it has internal vibration and low image quality. The new hybrid silhouette extraction method and adaptive skeleton model are proposed to overcome this constrained environment. The skin color is used to extract more sophisticated feature points. Finally, the experimental results show the superiority of the proposed method.

SVM-based Drone Sound Recognition using the Combination of HLA and WPT Techniques in Practical Noisy Environment

  • He, Yujing;Ahmad, Ishtiaq;Shi, Lin;Chang, KyungHi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5078-5094
    • /
    • 2019
  • In recent years, the development of drone technologies has promoted the widespread commercial application of drones. However, the ability of drone to carry explosives and other destructive materials may bring serious threats to public safety. In order to reduce these threats from illegal drones, acoustic feature extraction and classification technologies are introduced for drone sound identification. In this paper, we introduce the acoustic feature vector extraction method of harmonic line association (HLA), and subband power feature extraction based on wavelet packet transform (WPT). We propose a feature vector extraction method based on combined HLA and WPT to extract more sophisticated characteristics of sound. Moreover, to identify drone sounds, support vector machine (SVM) classification with the optimized parameter by genetic algorithm (GA) is employed based on the extracted feature vector. Four drones' sounds and other kinds of sounds existing in outdoor environment are used to evaluate the performance of the proposed method. The experimental results show that with the proposed method, identification probability can achieve up to 100 % in trials, and robustness against noise is also significantly improved.

Two Dimensional Slow Feature Discriminant Analysis via L2,1 Norm Minimization for Feature Extraction

  • Gu, Xingjian;Shu, Xiangbo;Ren, Shougang;Xu, Huanliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3194-3216
    • /
    • 2018
  • Slow Feature Discriminant Analysis (SFDA) is a supervised feature extraction method inspired by biological mechanism. In this paper, a novel method called Two Dimensional Slow Feature Discriminant Analysis via $L_{2,1}$ norm minimization ($2DSFDA-L_{2,1}$) is proposed. $2DSFDA-L_{2,1}$ integrates $L_{2,1}$ norm regularization and 2D statically uncorrelated constraint to extract discriminant feature. First, $L_{2,1}$ norm regularization can promote the projection matrix row-sparsity, which makes the feature selection and subspace learning simultaneously. Second, uncorrelated features of minimum redundancy are effective for classification. We define 2D statistically uncorrelated model that each row (or column) are independent. Third, we provide a feasible solution by transforming the proposed $L_{2,1}$ nonlinear model into a linear regression type. Additionally, $2DSFDA-L_{2,1}$ is extended to a bilateral projection version called $BSFDA-L_{2,1}$. The advantage of $BSFDA-L_{2,1}$ is that an image can be represented with much less coefficients. Experimental results on three face databases demonstrate that the proposed $2DSFDA-L_{2,1}/BSFDA-L_{2,1}$ can obtain competitive performance.

Binary classification by the combination of Adaboost and feature extraction methods (특징 추출 알고리즘과 Adaboost를 이용한 이진분류기)

  • Ham, Seaung-Lok;Kwak, No-Jun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.4
    • /
    • pp.42-53
    • /
    • 2012
  • In pattern recognition and machine learning society, classification has been a classical problem and the most widely researched area. Adaptive boosting also known as Adaboost has been successfully applied to binary classification problems. It is a kind of boosting algorithm capable of constructing a strong classifier through a weighted combination of weak classifiers. On the other hand, the PCA and LDA algorithms are the most popular linear feature extraction methods used mainly for dimensionality reduction. In this paper, the combination of Adaboost and feature extraction methods is proposed for efficient classification of two class data. Conventionally, in classification problems, the roles of feature extraction and classification have been distinct, i.e., a feature extraction method and a classifier are applied sequentially to classify input variable into several categories. In this paper, these two steps are combined into one resulting in a good classification performance. More specifically, each projection vector is treated as a weak classifier in Adaboost algorithm to constitute a strong classifier for binary classification problems. The proposed algorithm is applied to UCI dataset and FRGC dataset and showed better recognition rates than sequential application of feature extraction and classification methods.

Structural Quality Defect Discrimination Enhancement using Vertical Energy-based Wavelet Feature Generation (구조물의 품질 결함 변별력 증대를 위한 수직 에너지 기반의 웨이블릿 Feature 생성)

  • Kim, Joon-Seok;Jung, Uk
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.2
    • /
    • pp.36-44
    • /
    • 2008
  • In this paper a novel feature extraction and selection is carried out in order to improve the discriminating capability between healthy and damaged structure using vibration signals. Although many feature extraction and selection algorithms have been proposed for vibration signals, most proposed approaches don't consider the discriminating ability of features since they are usually in unsupervised manner. We proposed a novel feature extraction and selection algorithm selecting few wavelet coefficients with higher class discriminating capability for damage detection and class visualization. We applied three class separability measures to evaluate the features, i.e. T test statistics, divergence, and Bhattacharyya distance. Experiments with vibration signals from truss structure demonstrate that class separabilities are significantly enhanced using our proposed algorithm compared to other two algorithms with original time-based features and Fourier-based ones.

Robust Extraction of Facial Features under Illumination Variations (조명 변화에 견고한 얼굴 특징 추출)

  • Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.1-8
    • /
    • 2005
  • Facial analysis is used in many applications like face recognition systems, human-computer interface through head movements or facial expressions, model based coding, or virtual reality. In all these applications a very precise extraction of facial feature points are necessary. In this paper we presents a method for automatic extraction of the facial features Points such as mouth corners, eye corners, eyebrow corners. First, face region is detected by AdaBoost-based object detection algorithm. Then a combination of three kinds of feature energy for facial features are computed; valley energy, intensity energy and edge energy. After feature area are detected by searching horizontal rectangles which has high feature energy. Finally, a corner detection algorithm is applied on the end region of each feature area. Because we integrate three feature energy and the suggested estimation method for valley energy and intensity energy are adaptive to the illumination change, the proposed feature extraction method is robust under various conditions.

  • PDF