• Title/Summary/Keyword: a feature extraction

Search Result 2,185, Processing Time 0.033 seconds

Feature Extraction of ECG Signal for Heart Diseases Diagnoses (심장질환진단을 위한 ECG파형의 특징추출)

  • Kim, Hyun-Dong;Min, Chul-Hong;Kim, Tae-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.325-327
    • /
    • 2004
  • ECG limb lead II signal widely used to diagnosis heart diseases and it is essential to detect ECG events (onsets, offsets and peaks of the QRS complex P wave and T wave) and extract them from ECG signal for heart diseases diagnoses. However, it is very difficult to develop standardized feature extraction formulas since ECG signals are varying on patients and disease types. In this paper, simple feature extraction method from normal and abnormal types of ECG signals is proposed. As a signal features, heart rate, PR interval, QRS interval, QT interval, interval between S wave and baseline, and T wave types are extracted. To show the validity of proposed method, Right Bundle Branch Block (RBBB), Left Bundle Branch Block (LBBB), Sinus Bradycardia, and Sinus Tachycardia data from MIT-BIH arrhythmia database are used for feature extraction and the extraction results showed higher extraction capability compare to conventional formula based extraction method.

  • PDF

FEROM: Feature Extraction and Refinement for Opinion Mining

  • Jeong, Ha-Na;Shin, Dong-Wook;Choi, Joong-Min
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.720-730
    • /
    • 2011
  • Opinion mining involves the analysis of customer opinions using product reviews and provides meaningful information including the polarity of the opinions. In opinion mining, feature extraction is important since the customers do not normally express their product opinions holistically but separately according to its individual features. However, previous research on feature-based opinion mining has not had good results due to drawbacks, such as selecting a feature considering only syntactical grammar information or treating features with similar meanings as different. To solve these problems, this paper proposes an enhanced feature extraction and refinement method called FEROM that effectively extracts correct features from review data by exploiting both grammatical properties and semantic characteristics of feature words and refines the features by recognizing and merging similar ones. A series of experiments performed on actual online review data demonstrated that FEROM is highly effective at extracting and refining features for analyzing customer review data and eventually contributes to accurate and functional opinion mining.

A GENETIC ALGORITHM BASED FEATURE EXTRACTION TECHNIQUE FOR HYPERSPECTRAL IMAGERY

  • Ryu Byong Tae;Kim Choon-Woo;Kim Hakil;Lee Kyu Sung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.209-212
    • /
    • 2005
  • Hyperspectral data consists of more than 200 spectral bands that are highly correlated. In order to utilize hyperspectral data for classification, dimensional reduction or feature extraction is desired. By applying feature extraction, computational complexity of classification can be reduced and classification accuracy may be improved. In this paper, a genetic algorithm based feature extraction technique is proposed. Measure from discriminant analysis is utilized as optimization criterion. A subset of spectral bands is selected by genetic algorithm. Dimension of feature space is further reduced by linear transformation. Feasibility of the proposed technique is evaluated with AVIRIS data.

  • PDF

A Study on Feature Extraction Using High-Resolution Satellite Image Data (고해상도 위성 영상데이터를 이용한 지형요소 추출에 관한 연구)

  • 김상철;신석효;안기원;이건기;서두천
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.181-185
    • /
    • 2003
  • Recently, in accordance with supplying high-resolution satellite images which as IKONOS, KVR-1000, and Quick Bird, the use of satellite images have increased in the study which extraction of features from high-resolution satellite images is becoming a new research focus. In this study, using generally involves such as image segmentation, filtering and sobel operator and thinning in image processing for extraction of feature from satellite image. We apply this method to extraction of feature which need to the revision of map from high-resolution IKONOS satellite image data, we verified the capability of extraction of feature and application using satellite image and proposed a plan for the study in the future.

  • PDF

Feature Extraction Method based on Bhattacharyya Distance for Multiclass Problems (Bhattacharyya Distance에 기반한 다중클래스 문제에 대한 피춰 추출 기법)

  • 최의선;이철희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.643-646
    • /
    • 1999
  • In this paper, we propose a feature extraction method based on Bhattacharyya distance for multiclass problems. The Bhattacharyya distance provides a valuable information in determining the effectiveness of a feature set and has been used as separability measure for feature selection. Recently, a feature extraction algorithm hat been proposed for two normally distributed classes based on Bhattacharyya distance. In this paper, we propose to expand the previous approach to multiclass cases. Experiment results show that the proposed method compares favorably with the conventional methods.

  • PDF

A Comparison of Global Feature Extraction Technologies and Their Performance for Image Identification (영상 식별을 위한 전역 특징 추출 기술과 그 성능 비교)

  • Yang, Won-Keun;Cho, A-Young;Jeong, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • While the circulation of images become active, various requirements to manage increasing database are raised. The content-based technology is one of methods to satisfy these requirements. The image is represented by feature vectors extracted by various methods in the content-based technology. The global feature method insures fast matching speed because the feature vector extracted by the global feature method is formed into a standard shape. The global feature extraction methods are classified into two categories, the spatial feature extraction and statistical feature extraction. And each group is divided by what kind of information is used, color feature or gray scale feature. In this paper, we introduce various global feature extraction technologies and compare their performance by accuracy, recall-precision graph, ANMRR, feature vector size and matching time. According to the experiments, the spatial features show good performance in non-geometrical modifications, and the extraction technologies that use color and histogram feature show the best performance.

Study of Nonlinear Feature Extraction for Faults Diagnosis of Rotating Machinery (회전기계의 결함진단을 위한 비선형 특징 추출 방법의 연구)

  • Widodo, Achmad;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.127-130
    • /
    • 2005
  • There are many methods in feature extraction have been developed. Recently, principal components analysis (PCA) and independent components analysis (ICA) is introduced for doing feature extraction. PCA and ICA linearly transform the original input into new uncorrelated and independent features space respectively In this paper, the feasibility of using nonlinear feature extraction will be studied. This method will employ the PCA and ICA procedure and adopt the kernel trick to nonlinearly map the data into a feature space. The goal of this study is to seek effectively useful feature for faults classification.

  • PDF

A study on the Optimal Feature Extraction and Cmplex Adaptive Filter for a speech recognition (음성인식을 위한 복합형잡음제거필터와 최적특징추출에 관한 연구)

  • Cha, T.H.;Jang, S.K.;Choi, U.S;Choi, I.H.;Kim, C.S.
    • Speech Sciences
    • /
    • v.4 no.2
    • /
    • pp.55-68
    • /
    • 1998
  • In this paper, a novel method of noise reduction of speech based on a complex adaptive noise canceler and method of optimal feature extraction are proposed. This complex adaptive noise canceler needs simply the noise detection, and LMS algorithm used to calculate the adaptive filter coefficient. The method of optimal feature extraction requires the variance of noise. The experimental results have shown that the proposed method effectively reduced noise in noisy speech. Optimal feature extraction has shown similar characteristics in noise-free speech.

  • PDF

Optimal feature extraction for normally distributed multicall data (가우시안 분포의 다중클래스 데이터에 대한 최적 피춰추출 방법)

  • 최의선;이철희
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1263-1266
    • /
    • 1998
  • In this paper, we propose an optimal feature extraction method for normally distributed multiclass data. We search the whole feature space to find a set of features that give the smallest classification error for the Gaussian ML classifier. Initially, we start with an arbitrary feature vector. Assuming that the feature vector is used for classification, we compute the classification error. Then we move the feature vector slightly and compute the classification error with this vector. Finally we update the feature vector such that the classification error decreases most rapidly. This procedure is done by taking gradient. Alternatively, the initial vector can be those found by conventional feature extraction algorithms. We propose two search methods, sequential search and global search. Experiment results show that the proposed method compares favorably with the conventional feature extraction methods.

  • PDF

Emotion recognition from speech using Gammatone auditory filterbank

  • Le, Ba-Vui;Lee, Young-Koo;Lee, Sung-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.255-258
    • /
    • 2011
  • An application of Gammatone auditory filterbank for emotion recognition from speech is described in this paper. Gammatone filterbank is a bank of Gammatone filters which are used as a preprocessing stage before applying feature extraction methods to get the most relevant features for emotion recognition from speech. In the feature extraction step, the energy value of output signal of each filter is computed and combined with other of all filters to produce a feature vector for the learning step. A feature vector is estimated in a short time period of input speech signal to take the advantage of dependence on time domain. Finally, in the learning step, Hidden Markov Model (HMM) is used to create a model for each emotion class and recognize a particular input emotional speech. In the experiment, feature extraction based on Gammatone filterbank (GTF) shows the better outcomes in comparison with features based on Mel-Frequency Cepstral Coefficient (MFCC) which is a well-known feature extraction for speech recognition as well as emotion recognition from speech.