• Title/Summary/Keyword: a drug metabolizing enzyme

Search Result 86, Processing Time 0.023 seconds

The Effect of Vitamin A Derivatives on the Activity of Drug-metabolizing Enzyme in Rat Liver (Vitamin A 유도체로 인한 간의 약물대사효소 변동)

  • Lee, H.W.;Ryu, K.Z.;Ro, J.Y.;Hong, S.S.
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.65-72
    • /
    • 1982
  • It has been known that retinoids are intrinsically of critical importance for control of premalignant epithelial cell differentiation. In the absence of retinoids, normal cellular differentiation and growth does not occur in epithelia such as those of trachea and bronchi. Furthermore, it was also reported that retinoid deficiency enhanced susceptibility to chemical carcinogenesis in the respiratory system, in the bladder, and in the colon of the experimental animal. In 1974, Bollag examined the effects of synthetic retinoids in prevention of development of cancer and demonstrated synthetic retinoids to have more favorable therapeutic index than retinoic acid for causing regression of skin papilloma in mice. Therefore, it was assumed that this anticarcinogenic effect of vitamin A derivatives could be due to modification of the metabolism of the carcinogenic polycyclic hydrocarbon, which must first be activated to exert their effect. Hill and Shih reported that vitamin A compounds and analogs had inhibitory effect on drug metabolizing enzyme from liver and lung tissue of mouse and hamster. Lucy suggested that the chemoprevention effect of vitamin A derivatives is due to reaction with molecular oxygen, and it is possible that inhibition of hydroxybenzpyrene formation is a result of this property. On the other hand, butylated hydroxytoluene which is a potent antioxidant strongly inhibited the formation of mammary tumor induced by dimethylbenranthracene. Also, it was observed that this antioxidant inhibited cancer induction in rats by N-2-fluo-renylacetamide. The purpose of this experiment was to investigate the effect of vitamin A derivatives such as retinoic acid and retinoid on drug-metabolizing enzyme and to determine whether riboflavin tetrabutylate or vitamin E could prevent of modify any changes induced by vitamin A delivatives in the rats. The results obtained were as followings. 1) Body weight was significantly reduced by retinoic acid, but not by retinoid. 2) Retinoic acid markedly increased liver weight while retincid showed no effect on liver weight. Treatment of riboflavin tetrabutylate did not affect retinoic acid-induced change in both body weight and liver weight. 3) Both retinoic acid and retinoid remarkably decreased the activity of aminopyrine demethylase. Pretreatment of riboflavin tetrabutylate, however, prevented inhibitory effect of retinoic acid on the enzyme activity. 4) No significant effect of vitamin E on aminopyrine demethylase was observed in both groups treated with retinoic acid and retinoid.

  • PDF

Effects of Nitrite Exposure on Plasma Nitrite Levels and Hepatic Drug-metabolizing Enzymes in the Carp, Cyprinus carpio (아질산 노출이 이스라엘잉어 혈장내 아질산 농도 및 간장 약물대사효소에 미치는 영향)

  • 박관하;최상훈;김영길;김용호;최선남;김종배
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.2
    • /
    • pp.69-76
    • /
    • 2003
  • Effects of ambient nitrite, NO$_2$$\^$-/, at 1, 3, 10 and 30 mg/1, on the changes of plasma nitrite/nitrate and on hepatic drug - metabolizing enzyme activity were examined in the juvenile Israeli carp, Cyprinus carpio. When the fish were exposed to 1 and 3 mg/1 NO$_2$$\^$-/, there was an exposure duration-dependent increase in plasma NO$_2$$\^$-/ over the 96-hr period reaching 6∼7 fold excess the ambient concentration. In the fish exposed to 10 mg/1, a plateau concentration of less than 2-fold of the environment was attained in 12 hr. With 30 mg/1, however, the maximal plasma NO$_2$$\^$-/ was 41.25 mg/1 at 12 hr followed by a gradual decline. There was a concentration-dependent increase in methemoglobin (metHb) level in all NO$_2$$\^$-/ -exposed groups and a significant decrease in hematocrit value in 30 mg/l group after 96-hr exposure. Apart from the blunted increase in plasma NO$_2$$\^$-/ with higher NO$_2$$\^$-/ (10 and 30 mg/1) exposure, the ratio of plasma NO$_3$$\^$-/ to NO$_2$$\^$-/ was signifirantly higher in these groups compared to 1 and 3 mg/1. The imbalance in the plasma NO$_3$$\^$-//NO$_2$$\^$-/ at higher NO$_2$$\^$-/ exposure suggests a possible accelerated conversion of NO$_2$$\^$-/ to NO$_3$$\^$-/. Nitrite exposure did not affect the hepatic drug-metabolic activities in juvenile Israeli carp. All these data indicate that disposition of NO$_2$- differ depending upon exposed concentration and that metHb production may not be the exclusive toxic mechanism in carp.

Effect of Benzoyl Peroxide on the Activity of Drug-metabolizing Enzyme System and Lipid Peroxidation in Rats (Benzoyl peroxide가 흰쥐의 지질과산화현상에 미치는 영향)

  • Lee, H.W.;Rhee, K.S.;Hong, S.U.
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.55-63
    • /
    • 1982
  • Lipid peroxidation is the reaction of oxidative deterioration of polyunsaturated lipids and this peroxidation involves the direct reaction of oxygen and lipid to form free radical intermediates, which can lead to autocatalysis. As results of the extensive studies on the lipid peroxidation by many authors, the relationship between lipid peroxidation and the drug metabolizing system as well as the actions of free radicals on the peroxidation was reasonably well known. For a long time, the mechanism of hepatotoxicity of $CCl_4$ was not clearly understood. However, it is now quite well established that $CCl_4$ is activated in vivo to a free radical which is a highly reactive molecule. Therefore, lipid peroxidation which induces the reduction of cytochrome P-450 and aminopyrine demethylase activity is known as decisive event of $CCl_4$ hepatotoxicity. On the other hand, it was also reported that singlet molecular oxygen produces lipid peroxidation in liver microsomes. In this study the effects of benzoyl peroxide on the lipid peroxidation and drug-metabolizing enzyme were examined. Benzoyl peroxide mixed with starch and phosphates etc. is usually used as a food additive for flour bleaching and maturing purpose because of its oxidative property. Albino rats were used for the experimental animals. Benzoyl peroxide was suspended in soybean oil and sesame oil and administered intraperitoneally or orally. TBA value and aminopyrine demethylase activity were determined in liver microsomal fraction and serum. The results were summerized as following. 1) Body weights of animals administered benzoyl peroxide suspension were decreased while that of oil administered group were increased. 2) The activity of aminopyrine demethylase was generally decreased in animals administered oil suspension of benzoyl peroxide. Furthermore, the marked reduction of the enzyme activity was observed in animals administered benzoyl peroxide intraperitoneally. 3) Generally, microsomal TBA values as well as serum TBA were significantly elevated in benzoyl peroxide group in comparison with the control group. However, the more remarkable increase of serum TBA than microsomal TBA was observed in animals administered orally for 6 days. 4) Specifically, the changing pattern of TBA value was notable in serum rather than in liver microsome by intraperitoneal administration of benzoyl peroxide.

  • PDF

Cytochrome P-450 3A4 Proximal Promoter Activity by Histone Deacetylase Inhibitor in Hepg2 Cells

  • Kim, Ja-Young;Ahn, Mee-Ryung;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.166-166
    • /
    • 2003
  • Cytochrome P-450 3A4 (CYP3A4) is major enzyme in human liver, the role of this is detoxification and metabolizing more than 50% clinical drugs in use. The transcription of CYP3A4 is regulated by the Pregnenolone X receptor (PXR),of which human form is Steroid and Xenobiotics receptor (SXR).(omitted)

  • PDF

Role of Kupffer Cells in Hepatic Drug Metabolizing Functions during Sepsis in Rats

  • Lee, S.H.;Lee, S.M.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.109-109
    • /
    • 2001
  • The present study was done to investigate the relationship between Kupffer cells and alteration of cytochrome P-450 (CYP)-dependent drug metabolizing enzyme activities during polymicrobial sepsis. Male rats were subjected to polymicrobial sepsis by cecal ligation and puncture (CLP) followed by fluid resuscitation. The gadolinium chloride (GdC1$_3$, 10 mg/kg), blocker of Kupffer cells, was pretreated intravenously at 48 h and 24 h prior to the induction of CLP. All assay parameters were determined at 24 h after CLP or sham operation. In CLP-treated rats, the mortality rate of animals increased to 50% and serum alanine (ALT) and aspartate aminotransferase (AST) levels also significantly elevated. However, this increase was not suppressed by GdC1$_3$ pretreatment. Microsomal lipid peroxidation markedly increased after CLP operation. This increase was significantly attenuated by pretreatment. Total cytochrome P-450 content and NADPH-cytochrome P-450 reductase activity were not changed after CLP operation, but GdC1$_3$pretreatment reduced total cytochrome P-450 content, The hepatic microsomal CYP 1A1, 1A2, 2Bl and 2El activities in CLP-induced rats were also not significantly different from sham-operated rats. However, GdC1$_3$pretreatment showed a moderate increase in CYP1A1 and 1A2 activities. Our findings suggest that Kupffer cells may be partly responsible for producing hepatocellular dysfunction during sepsis.

  • PDF

Measurement of Human Cytochrome P450 Enzyme Induction Based on Mesalazine and Mosapride Citrate Treatments Using a Luminescent Assay

  • Kim, Young-Hoon;Bae, Young-Ji;Kim, Hyung Soo;Cha, Hey-Jin;Yun, Jae-Suk;Shin, Ji-Soon;Seong, Won-Keun;Lee, Yong-Moon;Han, Kyoung-Moon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.486-492
    • /
    • 2015
  • Drug metabolism mostly occurs in the liver. Cytochrome P450 (CYP) is a drug-metabolizing enzyme that is responsible for many important drug metabolism reactions. Recently, the US FDA and EU EMA have suggested that CYP enzyme induction can be measured by both enzymatic activity and mRNA expression. However, these experiments are time-consuming and their interassay variability can lead to misinterpretations of the results. To resolve these problems and establish a more powerful method to measure CYP induction, we determined CYP induction by using luminescent assay. Luminescent CYP assays link CYP enzyme activity to firefly luciferase luminescence technology. In this study, we measured the induction of CYP isozymes (1A2, 2B6, 2C9, and 3A4) in cryopreserved human hepatocytes (HMC424, 478, and 493) using a luminometer. We then examined the potential induction abilities (unknown so far) of mesalazine, a drug for colitis, and mosapride citrate, which is used as an antispasmodic drug. The results showed that mesalazine promotes CYP2B6 and 3A4 activities, while mosapride citrate promotes CYP1A2, 2B6, and 3A4 activities. Luminescent CYP assays offer rapid and safe advantages over LC-MS/MS and qRT-PCR methods. Furthermore, luminescent CYP assays decrease the interference between the optical properties of the test compound and the CYP substrates. Therefore, luminescent CYP assays are less labor intensive, rapid, and can be used as robust tools for high-throughput CYP screening during early drug discovery.

Effects of amprolium hydrochloride on expression of drug metabolizing enzyme genes in olive flounder Paralichthys olivaceus (Amprolium hydrochloride가 넙치 Paralichthys olivaceus의 약물대사 유전자 발현에 미치는 영향)

  • Sang Hyup Park;Chang Han Kim;Jeong-wan Do;Hye-Sung Choi;Yi Kyung Kim
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.337-348
    • /
    • 2023
  • This study was undertaken to evaluate the effect of amprolium hydrochloride on detoxification process of olive flounder Paralichthys olivaceus. A series of two experiment was performed based on the LD50 value obtained for amprolium. First, thirty flounder (average weight 230.27 g; average length 27.99 cm) was randomly allocated into five groups. Treatment was carried out using intra-muscular injection of amprolium at the dose levels of 4, 8, 16, and 32 mg/kg body weight. At 8, 24 and 48 h post injection, liver and kidney were collected for expression assay of drug metabolizing enzymes and pro-inflammatory cytokine genes. We found that the interleukin-1β (IL-1β) mRNA level were induced at 32 mg/kg and CYP1A genes showed the opposite pattern, while UDP-glucuronosyl-transferase (UGT1A7) and GST were significantly reduced in the liver. Moreover, the suppression of drug metabolizing enzymes and cytokine gene in the kidney was observed after treatment. Another treatment was carried out using intramuscular injection with 4, 8, 16, and 32 mg/kg and 60, 80, 100, 120 mg/kg body weight. At 6 days post injection, liver was collected. The IL-1β expression was markedly induced in the experimental group treated with 4 mg/kg. In addition, glutathione S-transferase (GST) mRNA level was higher in the group with 4 mg/kg. In conclusion, our data suggests that amprolium seem to cause direct or indirect physical, or biological toxicity of flounders, although this drug is considered one of the safest synthetic anticoccidial drugs of the livestock industry.

Cytochrome P-450 3A4 proximal promoter activity by histone deacetylase inhibitor in HepG2 cell.

  • Kim, Ja-Young;Ahn, Mee-Ryung;Sheen, Yhun-Yhong
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.120.2-120.2
    • /
    • 2003
  • Cytochrome P-450 3A4 (CYP3A4) is major enzyme in human liver, the role of this is detoxification and metabolizing more than 50% clinical drugs in use. Expression of CYP3A4 is transciptionally regulated by the Pregnenolone X receptor (PXR), of which human form is Steroid and Xenobiotics receptor (SXR). SXR is activated by wide range of endogenous and exogenous compounds, and then induces CYP3A4 gene expression. In the previous study, it has been known that proximal promoter (-864 to +64) does not response to chemical inducers such as pregnenolone 16a-carbonitrile (PCN), Rifampicin, Estrogen in terms of transcription of CYP 3A4 in cultured cells. (omitted)

  • PDF

Effects of Capsaicin on Liver Cytochrome $P_{450}$ in the Rat (Capsaicin이 백서 간의 Cytochrome $P_{450}$에 미치는 영향)

  • 김명혜;김낙두;이상섭
    • YAKHAK HOEJI
    • /
    • v.23 no.2
    • /
    • pp.111-118
    • /
    • 1979
  • It was previously reported that cytochrome P$_{450}$ content in liver was increased when Capsicum acetone extract was given chronically to rats. The present study is aimed to investigate the effect of capsaicin, a principal component of red pepper, on the drug metabolizing enzymes in rat liver. Capsaicin (5mg/kg) was given intraperitoneally once a day for seven days and zoxazolamine paralysis time and hexobarbital sleeping time were determined 24 hrs after the last dose of capsaicin. Plasma hexobarbital concentration was also determined five and 15 min after hexobarbital administration to rats. Zoxazolamine paralysis time and hexobarbital sleeping time were shortened by 31.6% and 37.1%, respectively, compared with control group. Plasma hexobarbital concentration was lowered by 26.2% after five min and by 35.2% after 15 min, respectively, compared with control group. However, administration of single dose of capsaicin did not affect the zoxazolamine paralysis time and hexobarbital sleeping time. Microsomal cytochrome P$_{450}$ content and NADPH-cytochrome C reductase activity were increased by 14.6% and 11.6%, respectively in the rats pretreated with capsaicin for seven days, while cytochrome b$_{5}$ content was not changed. These results suggest that treatment with capsaicin for seven days may induce the drug metabolizing enzyme in rat liver.

  • PDF

Studies on the Metabolism of Sinigrin in Rat (흰쥐에서 sinigrin 대사에 관한 연구)

  • Huh, Keun;Shin, Uk-Seob;Lee, Sang-Il;Song, Min-Ik
    • Biomolecules & Therapeutics
    • /
    • v.2 no.1
    • /
    • pp.11-15
    • /
    • 1994
  • The detoxifying properties of cruciferous vegetables components have been the subject of several recent investigations. Evidences from many biochemical and pharmacological studies indicated that higher consumption of cruciferous vegetables is associated with lower incidence of harmful actions such as hepatotoxicity and oxidative stress in animal and human populations. Recently, it has been reported that drug metabolizing and detoxifying enzyme activities were increased by cruciferous vegetable extract in which sinigrin is known to be a main active component, accounting for about 2 to 3 percents of total extract. The detoxifying effect of sinigrin has been well reported in several literatures. The metabolism of sinigrin in animal, however, has not been reported yet. That led us to study the metabolism of sinigrin in rat. Sinigrin is nown to be metabolized into three compounds, i.e., allyl isothiocyanate, glucose and potassium phosphate in cruciferous vegetables. Allyl isothiocyanate was formed in rat hepatic mitochondrial fraction in dose and incubation time dependent manner, that was confirmed by HPLC. Glucose formation was came up with results similar to that of allyl isothiocyanate. Three hours after i.p. administration of sinigrin to rat, allyl isothiocyanate appeared in rat liver, and five hours later it was detected in liver and blood. The above results suggested that sinigrin might be metabolized into allyl isothiocyanate, glucose and potassium phosphate in rat.

  • PDF