• Title/Summary/Keyword: a discriminant analysis

Search Result 1,330, Processing Time 0.024 seconds

New Methodology to Develop Multi-parametric Measure of Heart Rate Variability Diagnosing Cardiovascular Disease

  • Jin, Seung-Hyun;Kim, Wuon-Shik;Park, Yong-Ki
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.2
    • /
    • pp.17-24
    • /
    • 2005
  • The main purpose of our study is to propose a new methodology to develop the multi-parametric measure including linear and nonlinear measures of heart rate variability diagnosing cardiovascular disease. We recorded electrocardiogram for three recumbent postures; the supine, left lateral, and right lateral postures. Twenty control subjects (age: $56.70{\pm}9.23$ years), 51 patients with angina pectoris (age: $59.98{\pm}8.41$ years) and 13 patients with acute coronary syndrome (age: $59.08{\pm}9.86$ years) participated in this study. To develop the multi-parametric measure of HRV, we used the multiple discriminant analysis method among statistical techniques. As a result, the multiple discriminant analysis gave 75.0% of goodness of fit. When the linear and nonlinear measures of HRV are individually used as a clinical tool to diagnose cardiac autonomic function, there is quite a possibility that the wrong results will be obtained due to each measure has different characteristics. Although our study is a preliminary one, we suggest that the multi-parametric measure, which takes into consideration the whole possible linear and nonlinear measures of HRV, may be helpful to diagnose the cardiovascular disease as a diagnostic supplementary tool.

  • PDF

Discriminant Analysis of Binary Data with Multinomial Distribution by Using the Iterative Cross Entropy Minimization Estimation

  • Lee Jung Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.125-137
    • /
    • 2005
  • Many discriminant analysis models for binary data have been used in real applications, but none of the classification models dominates in all varying circumstances(Asparoukhov & Krzanowski(2001)). Lee and Hwang (2003) proposed a new classification model by using multinomial distribution with the maximum entropy estimation method. The model showed some promising results in case of small number of variables, but its performance was not satisfactory for large number of variables. This paper explores to use the iterative cross entropy minimization estimation method in replace of the maximum entropy estimation. Simulation experiments show that this method can compete with other well known existing classification models.

Lane Detection Using Biased Discriminant Analysis

  • Kim, Tae Kyung;Kwak, Nojun;Choi, Sang-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.27-34
    • /
    • 2017
  • We propose a cascade lane detector that uses biased discriminant analysis (BDA) to work effectively even when there are various external factors on the road. The proposed cascade detector was designed with an existing lane detector and the detection module using BDA. By placing the BDA module in the latter stage of the cascade detector, the erroneously detected results by the existing detector due to sunlight or road fraction were filtered out at the final lane detection results. Experimental results on road images taken under various environmental conditions showed that the proposed method gave more robust lane detection results than conventional methods alone.

Short utterance speaker verification using PLDA model adaptation and data augmentation (PLDA 모델 적응과 데이터 증강을 이용한 짧은 발화 화자검증)

  • Yoon, Sung-Wook;Kwon, Oh-Wook
    • Phonetics and Speech Sciences
    • /
    • v.9 no.2
    • /
    • pp.85-94
    • /
    • 2017
  • Conventional speaker verification systems using time delay neural network, identity vector and probabilistic linear discriminant analysis (TDNN-Ivector-PLDA) are known to be very effective for verifying long-duration speech utterances. However, when test utterances are of short duration, duration mismatch between enrollment and test utterances significantly degrades the performance of TDNN-Ivector-PLDA systems. To compensate for the I-vector mismatch between long and short utterances, this paper proposes to use probabilistic linear discriminant analysis (PLDA) model adaptation with augmented data. A PLDA model is trained on vast amount of speech data, most of which have long duration. Then, the PLDA model is adapted with the I-vectors obtained from short-utterance data which are augmented by using vocal tract length perturbation (VTLP). In computer experiments using the NIST SRE 2008 database, the proposed method is shown to achieve significantly better performance than the conventional TDNN-Ivector-PLDA systems when there exists duration mismatch between enrollment and test utterances.

Using Classification function to integrate Discriminant Analysis, Logistic Regression and Backpropagation Neural Networks for Interest Rates Forecasting

  • Oh, Kyong-Joo;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.417-426
    • /
    • 2000
  • This study suggests integrated neural network models for Interest rate forecasting using change-point detection, classifiers, and classification functions based on structural change. The proposed model is composed of three phases with tee-staged learning. The first phase is to detect successive and appropriate structural changes in interest rare dataset. The second phase is to forecast change-point group with classifiers (discriminant analysis, logistic regression, and backpropagation neural networks) and their. combined classification functions. The fecal phase is to forecast the interest rate with backpropagation neural networks. We propose some classification functions to overcome the problems of two-staged learning that cannot measure the performance of the first learning. Subsequently, we compare the structured models with a neural network model alone and, in addition, determine which of classifiers and classification functions can perform better. This article then examines the predictability of the proposed classification functions for interest rate forecasting using structural change.

  • PDF

Kernel Fisher Discriminant Analysis for Natural Gait Cycle Based Gait Recognition

  • Huang, Jun;Wang, Xiuhui;Wang, Jun
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.957-966
    • /
    • 2019
  • This paper studies a novel approach to natural gait cycles based gait recognition via kernel Fisher discriminant analysis (KFDA), which can effectively calculate the features from gait sequences and accelerate the recognition process. The proposed approach firstly extracts the gait silhouettes through moving object detection and segmentation from each gait videos. Secondly, gait energy images (GEIs) are calculated for each gait videos, and used as gait features. Thirdly, KFDA method is used to refine the extracted gait features, and low-dimensional feature vectors for each gait videos can be got. The last is the nearest neighbor classifier is applied to classify. The proposed method is evaluated on the CASIA and USF gait databases, and the results show that our proposed algorithm can get better recognition effect than other existing algorithms.

Concave penalized linear discriminant analysis on high dimensions

  • Sunghoon Kwon;Hyebin Kim;Dongha Kim;Sangin Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.4
    • /
    • pp.393-408
    • /
    • 2024
  • The sparse linear discriminant analysis can be incorporated into the penalized linear regression framework, but most studies have been limited to specific convex penalties, including the least absolute selection and shrinkage operator and its variants. Within this framework, concave penalties can serve as natural counterparts of the convex penalties. Implementing the concave penalized direction vector of discrimination appears to be straightforward, but developing its theoretical properties remains challenging. In this paper, we explore a class of concave penalties that covers the smoothly clipped absolute deviation and minimax concave penalties as examples. We prove that employing concave penalties guarantees an oracle property uniformly within this penalty class, even for high-dimensional samples. Here, the oracle property implies that an ideal direction vector of discrimination can be exactly recovered through concave penalized least squares estimation. Numerical studies confirm that the theoretical results hold with finite samples.

Designing Neural Network Using Genetic Algorithm (유전자 알고리즘을 이용한 신경망 설계)

  • Park, Jeong-Sun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.9
    • /
    • pp.2309-2314
    • /
    • 1997
  • The study introduces a neural network to predict the bankruptcy of insurance companies. As a method to optimize the network, a genetic algorithm suggests optimal structure and network parameters. The neural network designed by genetic algorithm is compared with discriminant analysis, logistic regression, ID3, and CART. The robust neural network model shows the best performance among those models compared.

  • PDF

A Case Study on Electronic Part Inspection Based on Screening Variables (전자부품 검사에서 대용특성을 이용한 사례연구)

  • 이종설;윤원영
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.3
    • /
    • pp.124-137
    • /
    • 2001
  • In general, it is very efficient and effective to use screening variables that are correlated with the performance variable in case that measuring the performance variable is impossible (destructive) or expensive. The general methodology for searching surrogate variables is regression analysis. This paper considers the inspection problem in CRT (Cathode Ray Tube) production line, in which the performance variable (dependent variable) is binary type and screening variables are continuous. The general regression with dummy variable, discriminant analysis and binary logistic regression are considered. The cost model is also formulated to determine economically inspection procedure with screening variables.

  • PDF