• 제목/요약/키워드: a chamber

검색결과 6,497건 처리시간 0.031초

설정 음압 및 스펙트럼 재현을 위한 음향 환경 시험 챔버의 기본 설계 변수 선정 (Design of High Intensity Acoustic Test Facility to Generate Required Sound Pressure Level and Spectrum)

  • 김영기;우성현;김홍배;문상무;이상설
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.867-872
    • /
    • 2002
  • A high intensity acoustic test facility is constructed at Korea Aerospace Research Institute (KARI) by 2003. The reverberant chamber of the facility has a volume of 1,228 cubic meters and shall provide an acoustic environment of 152 dB over the frequency range of 25 Hz to 10,000 Hz. The facility consists of a large scaled reverberant chamber, acoustic power generation systems, gases nitrogen supply systems, and acoustic control systems. This paper describes how the basic parameters of a chamber and power generation systems are controlled to meet the requirement of the test. The volume of a reverberant chamber is controlled by the size of test objects and the reverberant characteristics of a chamber. The capacity of acoustic power generation systems is determined by the energy absorption of a chamber and the efficiency of acoustic modulators. Simple math is employed to calculate the required power of acoustic modulators. Moreover, the paper explains how the distribution of sound pressure level at low frequency is checked by analytical and numerical methods.

  • PDF

마이크로 유체 원심분리기의 입구 조건과 챔버 크기에 따른 회전 유동 성능 평가 (Performance Evaluation of Rotational Flow of a 2×2 Microfluidic Centrifuge with varying Inlet Conditions and Chamber Sizes)

  • 전형진;권봉현;김대일;김형훈;고정상
    • 한국가시화정보학회지
    • /
    • 제12권1호
    • /
    • pp.43-48
    • /
    • 2014
  • This paper describes the measurement of performance evaluation of rotational flow varying chamber size and Reynolds number. Through the experimental visualization of the flow rotation, the number and position of flow rotation in the $2{\times}2$ microfluidic centrifuge were examined. At a chamber width of 250${\mu}m$, single flow rotation was obtained over at a Reynolds number of 300, while at a chamber width of 500 ${\mu}m$, single flow rotation did not appear. For performance evaluation, the intensity in microchamber was measured during 20 sec. At a chamber width of 250 ${\mu}m$, performance of rotational flow increased as Reynolds number increased. However, the variation of intensity in microchamber remained unchanged at a chamber width of 500 ${\mu}m$. The numerical analysis showed that the threshold centrifugal acceleration to obtain rotational flow for ejected particles was 200g.

연료분사계 변수의 변화에 따른 커먼레일 디젤엔진의 분무특성에 관한 수치적 분석 (A Numerical Analysis on the Spray Characteristics at Different Injection System Parameters in a Common-rail Diesel Engine)

  • 이석영;전충환
    • 한국분무공학회지
    • /
    • 제15권1호
    • /
    • pp.8-16
    • /
    • 2010
  • This paper present the diesel spray characteristics at different injection system parameters in a HSDI diesel engine. The spray characteristics was calculated by the coupled simulation of fuel injection system model and three-dimensional KIVA-3V code with TAB spray model. The relevant injection parameters are accumulator volume, control chamber initial volume, control orifice diameter, needle valve diameter and nozzle chamber initial volume, etc. Parametric investigation with respect to twelve relevant injection parameters showed that there was a significant advantage in varying control chamber initial volume, control chamber orifice diameter, and nozzle chamber orifice diameter with respect to effect the SMD and fuel injection speed. Consequently, in order to design the fuel injection system for spray characteristics, it seems reasonable to suppose to be optimized the fuel injection system.

공기실이 설치된 건축물 급수관로의 과도압력 특성 (Characteristics of the Transient Pressure in a Building Water Supply System with an Air Chamber)

  • 황희성;임기원;이광복;조병선;차동진
    • 설비공학논문집
    • /
    • 제12권8호
    • /
    • pp.782-790
    • /
    • 2000
  • A numerical study has been conducted to characterize the transient pressure in a building water supply system with an air chamber by utilizing a commercial code that employs the method of characteristics. Some results produced for the purpose of verification in the study agree quite well with the previously reported. Several parameters are then varied. Among them are the valve closure time, the wave speed, the static pressure, the polytropic exponent, the air chamber volume, the inner diameter and the shape of orifice in the air chamber, etc, while the water temperature and velocity are kept constant at $20^P{circ}C $,/TEX> and 0.8 m/s, respectively, Results reported in this parametric study may be useful to understand the unsteady behavior of the system.

  • PDF

상악(上顎) 제일대구치(第一大臼齒) 치수저(齒髓底)의 해부학적(解剖學的) 고찰(考察) (A STUDY ON THE ANAOMY OF THE PULP CHAMBER FLOOR OF THE PERMANENT MAXILLARY FIRST MOLAR)

  • 권혁춘
    • Restorative Dentistry and Endodontics
    • /
    • 제6권1호
    • /
    • pp.105-107
    • /
    • 1980
  • A total of 125 extracted maxillary first molars were used to study the configuration of the floor of the pulp chamber. The specimens were ground and the pulp chamber was examined with a magnifying glass and explored with sharp explorer. The study showed the shape of the pulp chamber, number of root canals, and type of canal orifice. The results were as follows; 1. In so far as observing the shape of the pulp chamber of the teeth, 50.4% of the teeth were trapezoid, 20.8% were inverted trapezoid, 18.4% were rectangle and 10.4% were triangle shape. 2. 71.2% of the specimens have 3 root canal orifices, and 28.8% have 4 root canal orifices. 3. 71.2% of the specimens have 1 mesiobuccal canal orifice, 23.2% have 2 mesio-buccal canal orifices joined by a groove, and 5.6% have 2 mesio-buccal canal orifices seperated each other.

  • PDF

맥동압을 가지는 챔버내의 압력변화에 관한 연구 (Study on the Pressure Variation in a Chamber Caused by Pulsation Pressure)

  • 이중섭;심규진;;정한식;정효민
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.132-138
    • /
    • 2007
  • Experimental results of pulsating pressure behavior inside a chamber have been confirmed by computational work. Inside-cylinder pressure shows unstable condition at low rpm. This is caused by plate-type suction valve. It has effect up to inlet of the chamber. But trembling phenomenon is reduced as the pressure is enlarged by increasing the rpm. Result comparison between experimental and numerical analysis shows pulsation reduction is affected by the chamber. We can confirm that compressible effect of the working flow is shown at chamber inlet by increasing rpm. On the other side, this effect is declined at chamber outlet by increasing rpm. It means outlet pressure is going on balance with atmosphere pressure. Buffer plate-type chamber has efficiency of pulsation flow reduction.

치수강(齒髓腔)과 치관외면(齒冠外面)과의 최단거리(最短距離)에 관(關)한 실측연구(實測硏究) (A STUDY ON MEASUREMENT OF MINIMAL DISTANCE BETWEEN PULP CHAMBER AND CORONAL SURFACE)

  • 김영해
    • Restorative Dentistry and Endodontics
    • /
    • 제14권2호
    • /
    • pp.1-4
    • /
    • 1989
  • To determine the thickness of coronal hard structure the minimal distance between pupal surface and outer surface of crown was measured by means of Bowley gauge on extracted first molars. Upper(28 teeth) and lower(24 teeth) were carefully collected from 30-39 years of age and male. The teeth were split mesio-distally through central pit. On the split surface various part which are deeply related in cavity preparation were measured (schematic drawing). The results were as follows: A : Distance from mesio-cervical enamel to pulp chamber surface. upper $2.63{\pm}0.19$(mm) Lower $2.18{\pm}0.27$(um) B : Distance from mesial chamber ceiling to mesial surface upper $2.75{\pm}0.34$ Lower $2.62{\pm}0.31$ C : Distance from mesial chamber ceiling to occlusal surface upper $3.82{\pm}0.51$ Lower $3.49{\pm}0.50$ D : Distance from distal chamber ceiling to occlusal surface upper $4.28{\pm}0.69$ Lower $3.90{\pm}0.52$ E : Distance from distal chamber ceiling to distal surface upper $2.79{\pm}0.45$ Lower $2.41{\pm}0.40$ F : Distance from disto cervical enamel to pulp chamber surface upper $2.49{\pm}0.24$ Lower $2.39{\pm}0.25$.

  • PDF

75톤급 액체로켓엔진 연소기의 저압 조건에서 수행된 연소안정성 시험 (Combustion Stability Rating Test under Low Pressure Condition of a 75-$ton_f$ LRE Thrust Chamber)

  • 이광진;강동혁;김문기;안규복;한영민;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.231-238
    • /
    • 2010
  • 75톤급 기술검증용 연소기의 저압 조건 연소안정성 시험이 수행되었다. 동일한 추진제 유량을 연소실에 공급하면서 분사기 수량이 감소된 연소기 헤드의 경우 연소압력 30 bar에서 자발 불안정이 발생하였으나, 분사기 수량이 증가된 연소기 헤드에서는 동일한 연소압력 조건에서 고주파 연소안정성이 유지됨을 보였다. 30 bar에서 연소안정성을 보인 연소기 헤드는 연소압력 20 bar에서 자발 불안정이 발생하여 안정성 경계 영역을 보여주었다.

  • PDF

7톤급 액체로켓엔진 연소기 개념설계 (Conceptual Design of Thrust Chamber for 7 tonf-class Liquid Rocket Engine)

  • 김종규;안규복;조미옥;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.454-456
    • /
    • 2012
  • 한국형발사체(KSLV-II) 3단용 7톤급 액체로켓엔진 연소기 개념설계에 대한 내용을 기술하였다. 3단용 엔진은 TP 방식 엔진이며, 연소기의 진공추력은 6.9 tonf, 진공 비추력 336.9 sec, 연소압력 70 bar, 노즐 팽창비 94.5, 총 추진제 유량 20.5 kg/s, 혼합비 2.45 이다. 7톤급 연소기의 헤드부는 90개의 동축 와류형 분사기로 구성되고, 연소실은 케로신 재생냉각 일체형 연소기이다.

  • PDF

와류실식 디젤기관의 배기배출물 저감을 위한 연소실의 압축비 및 분구면적비 개선 (Improving Compression and Throat Ratios of Combustion Chamber for Reduction of Exhaust Emissions for a Swirl Chamber Type Diesel Engine)

  • 이창규;허윤근;서신원
    • 농업과학연구
    • /
    • 제37권3호
    • /
    • pp.501-508
    • /
    • 2010
  • A swirl chamber type diesel engine attachable to 18 kW agricultural tractors was improved to reduce exhaust emissions. Compression ratio and throat area ratio of the combustion chamber were varied to determine optimum combustion conditions. Tests were composed of full load and 8-mode emission tests. Compression ratio was fixed as 21, but the swirl chamber volume was increased by 3.8%. Output power, torque, specific fuel consumption, exhaust gas temperature, and smoke level were not considerably different for compression ratios of 21.5 (reference condition) and 21 (test condition), while NOx, HC, CO and PM levels for the compression ratio of 21 were decreased by 11%, 46%, 28%, 11%, respectively, from those for the compression ratio of 21.5. The tests were also conducted with a compression ratio of 22 and 4.3% increased chamber volume. Output power, torque, exhaust gas temperature and smoke level were greater, while specific fuel consumption was less for the compression ratio of 22 than those for the compression ratio of 21.5. Increase of compression ratio decreased HC and CO levels by 24%, 39%, but increased NOx and PM levels by 24%, 39%. Based on these results, a compression ratio of 21 was selected as an optimum value. Then, full load tests with the selected compression ratio of 21 were carried out for different throat ratios of 1.0%, 1.1%, 1.2%. Output power and torque were greatest and smoke was lowest when throat area ratio was 1.1%, which satisfied the target values of specific fuel consumption (less than 272 g/$kW{\cdot}h$) and exhaust gas temperature (less than $550^{\circ}C$). Therefore, a throat area ratio of 1.1% was selected as an optimum value.