• Title/Summary/Keyword: a calibration

Search Result 5,219, Processing Time 0.03 seconds

악조건하의 비동일평면 카메라 교정을 위한 알고리즘

  • Ahn, Taek-Jin;Lee, Moon-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.1001-1008
    • /
    • 2001
  • This paper presents a new camera calibration algorithm for ill-conditioned cases in which the camera plane is nearly parallel to a set of non-coplanar calibration boards. for the ill-conditioned case, most of existing calibration approaches such as Tsais radial-alignment-constraint method cannot be applied. Recently, for the ill-conditioned coplanar calibration Lee&Lee[16] proposed an iterative algorithm based on the least square method. The non-coplanar calibration algorithm presented in this paper is an iterative two-stage procedure with extends the previous coplanar calibration algorithm. Through the first stage, camera, position and orientation parameters as well as one radial distortion factor are determined optimally for a given data of the scale factor and the focal length. In the second stage, the scale factor and the focal length are locally optimized. This process is repeated until any improvement cannot be expected any more Computational results are provided to show the performance of the algorithm developed.

  • PDF

Autonomous Robot Kinematic Calibration using a Laser-Vision Sensor (레이저-비전 센서를 이용한 Autonomous Robot Kinematic Calibration)

  • Jeong, Jeong-Woo;Kang, Hee-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.176-182
    • /
    • 1999
  • This paper presents a new autonomous kinematic calibration technique by using a laser-vision sensor called "Perceptron TriCam Contour". Because the sensor measures by capturing the image of a projected laser line on the surface of the object, we set up a long, straight line of a very fine string inside the robot workspace, and then allow the sensor mounted on a robot to measure the point intersection of the line of string and the projected laser line. The point data collected by changing robot configuration and sensor measuring are constrained to on a single straght line such that the closed-loop calibration method can be applied. The obtained calibration method is simple and accurate and also suitable for on-site calibration in an industrial environment. The method is implemented using Hyundai VORG-35 for its effectiveness.

  • PDF

A Study for the 3-Dimensional Measurement System using Laser Slit-Ray (레이저 슬릿광을 이용한 3차원 계측 장치에 관한 연구)

  • 김선일;정재문;양윤모
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.2
    • /
    • pp.27-39
    • /
    • 1992
  • 3 Dimensional measurement system using camera and laser slit-ray is studied. Precise calibration technique in this system is suggested. Calibration is accomplished with calibration die, calibration block and robot. For obtaining calibration parameters, the equations are solved using least square error method from a great many calibration points to reduce measuring error. Continuous measurement is possible for the object which is larger than one frame of camera. The efficiency and usability are proved by applying to the tire profile measuring system which measures tire profile using robot and this system.

  • PDF

Nacelle-Mounted Lidar Beam Line of Sight (LOS) Wind Speed Calibration Procedure Using Meteorological Mast (기상탑을 이용한 나셀 거치형 라이다 빔의 LOS(Line of Sight) 풍속 교정절차)

  • Ryu, Dong-Hun;Lee, Min-Soo;Lim, Chae-Wook;Ko, Kyung-Nam;Shin, Dong-Heon;Kang, Bo-Sin;Kim, Dong-Wan
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.24-31
    • /
    • 2018
  • Wind lidar application is increasing and its calibration method is required to use wind lidar as an alternative to the meteorological mast. A nacelle lidar calibration method is now being discussed in IEC 61400-50-3 (Wind energy generation systems - Part 50-3: Use of nacelle-mounted lidars for wind measurements), and the method is mainly based on the wind lidar beam line of sight (LOS) wind speed calibration suggested by DTU as DTU E-0020 (Calibrating Nacelle Lidars). In this paper, a LOS wind speed calibration method is introduced and a calibration example performed on Jeju island is presented. The results showed a slope of 1.011 and R2 of 0.997, which means that the LOS wind speed is highly correlated with the reference wind speed and is comparable. But LOS wind speed calibration requires a very long time due to its principle and environmental conditions, and a calibration method that can overcome this problem of uncontrollable environments needs to be developed.

Audiometric Calibration of Aural Acoustic Immittance Instrument: A Review of Acoustic Immittance Instrument's Calibration

  • Kim, Jin-Dong
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.115-126
    • /
    • 2016
  • Audiometric calibration is a prerequisite for securing the reliability of audiometric test results by checking the internal consistency of the relevant instrument. The purpose of this review is to help instrument operators understand the calibration procedure of aural acoustic immittance instrument which is frequently used for objective assessment. By referring to the latest international standards and the national standards relevant to the aural acoustic immittance instrument, the following parameters will be reviewed: 1) introduction of performance characteristics, 2) detailed procedure of the calibration method. According to the newest international and national standards [IEC 60645-5 (2004), ANSI S3.39-1987 (R2012)], the aural acoustic immittance instrument basically includes six components: 1) calibration cavity, 2) acoustic immittance analysis system, 3) probe assembly/unit and signal, 4) pneumatic air-pressure pump system, 5) acoustic reflex activator system and 6) tympanogram and acoustic reflex plotting system, each of these components should meet set standards. The result of behavioral hearing tests is influenced by various complex factors including the examinee's cooperation, background noise of the examination room, measurement method, skill level of the audiologist and calibration status, but the objective hearing tests is more influenced by the calibration status of the instrument than any other factors. The audiologist should take full responsibility for the reliability of the hearing test result, so he/she should carry out the calibration check and adjustments of aural acoustic immittance instrument periodically and maintain the instrument continuously by referring to the newest standards and the manufacturer's instruction manual.

Study on Optimal Calibration Configurations of a Parallel Type Machining Center Under a Single Planar Constraint

  • Lee, Min-Ki;Kim, Tae-Sung;Park, Kun-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1886-1893
    • /
    • 2003
  • This paper examines the parameter observability of a calibration system that consrains a mobile platform to a planar table to take the calibration data. To improve the parameter observability, we find the optimal configurations providing the calibration with maximum contribution. The QR-decomposition is used to compute the optimal configurations that maximize the linear independence of rows of an observation matrix. The calibration system is applied to the parallel type manipulator constructed for a machining center. The calibration results show that all the necessary kinematic parameters assigned in a Stewart-Gough platform are identifiable and convergent to desirable accuracy.

Study on the Observability of Calibration System with a Constraint Oprerator (구속연산자에 의한 보정 시스템의 관측성에 관한 연구)

  • Lee, Min-Ki;Kim, Tae-Sung;Park, Kun-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.647-655
    • /
    • 2003
  • This paper studies the observability of calibration system with a constraint movement by a constraint operator. The calibration system with the constraint movement need only simple sensing device to check whether the constraint movements are completed within an established range. However, it yields the concern about the poor parameter observability due to the constraint movements. This paper uses the QR-decomposition to find the optimal calibration configurations maximizing the linear independence of rows of a observation matrix. The number of identifiable parameters are examined by the rank of the observation matrix, which represents the parameter observability. The method is applied to a parallel typed machining center and the calibration results are presented. These results verify that the calibration system with low-cost indicators and simple planar table is accurate as well as reliable.

Phase-Locked Loops using Digital Calibration Technique with counter (카운터 기반 디지털 보상 기법을 이용한 위상 고정 루프)

  • Jeong, Chan-Hui;Abdullah, Ammar;Lee, Kwan-Joo;Kim, Hoon-Ki;Kim, Soo-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.320-324
    • /
    • 2011
  • A digital technique is adopted to calibrate the current mismatch of the charge pump (CP) in phase-locked loops. A 2 GHz charge pump PLL (CPPLL) is used to justify the proposed calibration technique. The proposed digital calibration technique is implemented simply using a counter. The proposed calibration technique reduces the calibration time by up to a maximum of 50% compared other with techniques. Also by using a dual-mode CP, good current matching characteristics can be achieved to compensate $0.5{\mu}A$ current mismatch in CP. It was designed in a standard $0.13{\mu}m$ CMOS technology. The maximum calibration time is $33.6{\mu}s$ and the average power is 18.38mW with 1.5V power supply and effective area is $0.1804mm^2$.

Development of the Algorithm for Optimizing Wavelength Selection in Multiple Linear Regression

  • Hoeil Chung
    • Near Infrared Analysis
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • A convenient algorithm for optimizing wavelength selection in multiple linear regression (MLR) has been developed. MOP (MLP Optimization Program) has been developed to test all possible MLR calibration models in a given spectral range and finally find an optimal MLR model with external validation capability. MOP generates all calibration models from all possible combinations of wavelength, and simultaneously calculates SEC (Standard Error of Calibration) and SEV (Standard Error of Validation) by predicting samples in a validation data set. Finally, with determined SEC and SEV, it calculates another parameter called SAD (Sum of SEC, SEV, and Absolute Difference between SEC and SEV: sum(SEC+SEV+Abs(SEC-SEV)). SAD is an useful parameter to find an optimal calibration model without over-fitting by simultaneously evaluating SEC, SEV, and difference of error between calibration and validation. The calibration model corresponding to the smallest SAD value is chosen as an optimum because the errors in both calibration and validation are minimal as well as similar in scale. To evaluate the capability of MOP, the determination of benzene content in unleaded gasoline has been examined. MOP successfully found the optimal calibration model and showed the better calibration and independent prediction performance compared to conventional MLR calibration.

Radiometric Calibration of FTIR Spectrometer For Passive Remote Sensing Application (수동형 원격탐지 FTIR 분광계의 Radiometric Calibration)

  • Kim, Dae-Sung;Park, Do-Hyun;Choi, Seung-Ki;Ra, Sung-Woong
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.391-395
    • /
    • 2006
  • In this paper, radiometric calibration of a FTIR spectrometer for passive remote sensing application was introduced and verified. Radiometric calibration is a significant signal processing procedure to retrieve the object radiance from the measured spectrum. The object radiance is measured and registered distorted by the detector's responsivity dependent on wavelength and instrument self-emission. Radiance of two temperature points, hot temperature and cold temperature, from a well-controlled blackbody was measured and used to obtain the scale factor and offset factor which are required for radiometric calibration. For gas phase C2H5OH. radiometric calibration was done and verified through comparison of its emission line width and intensity with the standard spectrum.