• Title/Summary/Keyword: a accelerometer

Search Result 1,048, Processing Time 0.027 seconds

Customized Estimating Algorithm of Physical Activities Energy Expenditure using a Tri-axial Accelerometer (3축 가속도 센서를 이용한 신체활동에 따른 맞춤형 에너지 측정 알고리즘)

  • Kim, Do-Yoon;Jeon, So-Hye;Kang, Seung-Yong;Kim, Nam-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.103-111
    • /
    • 2011
  • The research has increased the role of physical activity in promoting health and preventing chronic disease. Estimating algorithm of physical activity energy expenditure was implemented by using a tri-axial accelerometer motion detector of the SVM(Signal Vector Magnitude) of 3-axis(x, y, z). COUNT method has been proven through experiments of validity Freedson, Hendelman, Leenders, Yngve was implemented by applying the SVM method. A total of 10 participants(5 males and 5 females aged between 20 and 30 years). The activity protocol consisted of three types on treadmill; participants performed three treadmill activity at three speeds(3, 5, 8 km/h). These activities were repeated four weeks. Customized estimating algorithm for energy expenditure of physical activities were implemented with COUNT and SVM correlation between the data.

Estimating Algorithm of Physical Activity Energy Expenditure and Physical Activity Intensity using a Tri-axial Accelerometer (3축 가속도 센서를 이용한 신체활동 에너지 소비량과 신체활동 강도 예측 알고리즘)

  • Kim, D.Y.;Hwang, I.H.;Jeon, S.H.;Bae, Y.H.;Kim, N.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • Estimating algorithm of physical activity energy expenditure and physical activity intensity was implemented by using a tri-axial accelerometer motion detector of the SVM(Signal Vector Magnitude) of 3-axis(x, y, z). A total of 10 participants(5 males and 5 females aged between 20 and 30 years). The ActiGraph(LLC, USA) and Fitmeter(Fit.life, korea) was positioned anterior superior iliac spine on the body. The activity protocol consisted of three types on treadmill; participants performed three treadmill activity at three speeds(3, 5, 8 km/h). Each activity was performed for 7 minutes with 4 minutes rest between each activity for the steady state. These activities were repeated four weeks. Algorithm for METs, kcal and intensity of activities were implemented with ActiGraph and Fitmeter correlation between the data.

Object Localization in Sensor Network using the Infrared Light based Sector and Inertial Measurement Unit Information (적외선기반 구역정보와 관성항법장치정보를 이용한 센서 네트워크 환경에서의 물체위치 추정)

  • Lee, Min-Young;Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1167-1175
    • /
    • 2010
  • This paper presents the use of the inertial measurement unit information and the infrared sector information for getting the position of an object. Travel distance is usually calculated from the double integration of the accelerometer output with respect to time; however, the accumulated errors due to the drift are inevitable. The orientation change of the accelerometer also causes error because the gravity is added to the measured acceleration. Unless three axis orientations are completely identified, the accelerometer alone does not provide correct acceleration for estimating the travel distance. We propose a way of minimizing the error due to the change of the orientation. In order to reduce the accumulated error, the infrared sector information is fused with the inertial measurement unit information. Infrared sector information has highly deterministic characteristics, different from RFID. By putting several infrared emitters on the ceiling, the floor is divided into many different sectors and each sector is set to have a unique identification. Infrared light based sector information tells the sector the object is in, but the size of the uncertainty is too large if only the sector information is used. This paper presents an algorithm which combines both the inertial measurement unit information and the sector information so that the size of the uncertainty becomes smaller. It also introduces a framework which can be used with other types of the artificial landmarks. The characteristics of the developed infrared light based sector and the proposed algorithm are verified from the experiments.

Design and Evaluation of Blending Algorithm for Rate Adaptive Pace: Simulation Study (심박수 적응형 심박 조율 알고리즘 설계 및 평가: 시뮬레이션 연구)

  • Myoung, Hyoun-Seok;Lee, Kyoung Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.32-37
    • /
    • 2019
  • In this study, we designed a blending algorithm for rate adaptive pacing for cardiac pacemaker. Generally, rate adaptive pacing (RAP) is applied to patients whose heart rate does not rise during exercise for chronotropic incompetence (CI) patient. It is very important to develop an algorithm for RAP that can be properly applied to CI patients. In order to design an RAP algorithm we used dual sensors. Firstly, we designed a bio-signal measurement system based on the dual sensors, which are accelerometer and respiratory system. Secondly, we conducted treadmill test for the simulation experiment while using 3-lead ECG as reference. Finally, we designed a blending algorithm based on activation state of the dual sensors. The proposed blending algorithm was subdivided into three sections based on the accelerometer signal, which are rapidly increased section (W1), hardly changed section (W2), and decreased section (W3). Each weight is set aside for each section. To evaluate this algorithm, ten healthy adult males were participated. The correlation and Root Mean Square Error between the proposed algorithm and the reference were compared, and shown to be r=0.88 and 2.82 bpm, respectively. These results show that the proposed blending algorithm of dual sensors enables proper tracking of the heart rate during exercise. Also, it shows the possibility that the proposed blending algorithm can be applied to improve quality of life of the chronotropic incompetence patient.

Study for Prediction of Ride Comfort on the Curve Track by Predictive Curve Detection (사전틸팅제어의 곡선부 주행 승차감 평가 연구)

  • Ko, Tae-Hwan;Lee, Duk-Sang
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.69-74
    • /
    • 2011
  • In the curving detection method by using an accelerometer, the ride comfort in the first car is worse than one in the others due to spend the time to calculate the tilting command and drive the tilting mechanism after entering in the curve. In order to enhance the ride comfort in the first car, the preditive curve detection method which predicts the distance from a train to the starting point of curve by using the GPS, Tachometer, Ground balise and position DB for track. In this study, we predicted and evaluated the ride comfort for predictive curve detection method in transient curves according to the shape and dimension of transient curve and the various driving speed. Also, we predicted the improvement of the ride comfort for predictive curve detection method by comparing with the result of the ride comfort for predictive curve detection method and for curve detection method using an accelerometer in the short transient curve.

  • PDF

Estimation of the Pipe Thickness using the Variation of the Group Velocity (군속도 변화를 이용한 배관 두께 측정)

  • Han, Seung-Hee;Hwang, Jong-Myung;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.32-40
    • /
    • 2010
  • This paper proposes the technique of estimating the pipe thickness using the measured group velocity. To measure the group velocity from the accelerometer data in the frequency domain, Wigner-Ville distribution is utilized, which interprets the waveform of the shock wave. Using this measured group velocity, this paper proposes the technique to estimate the thickness of pipes with the impact on the pipe. The group velocity is estimated by the modeling correlation between the group velocity and the thickness of the pipe based on the propagation velocities. The correlation model between thickness and group velocity has been proved through the real experiments. The measured group velocity in the frequency-domain is the maximum at the center frequency of the bending waves in the modeling of the group velocity. In addition to these, a smoothing technique for analyzing lamb wave Wigner-Ville distribution has been introduced to improve the reliability of the data acquisition.

Error Analysis and Compensation of Measurement Delay in INS/GPS Integrated Systems with Kalman Filtering (칼만필터를 사용하는 INS/GPS 결합시스템에서 측정치 지연에 의한 오차 분석 및 보상)

  • Park, Chan-Gook;Cho, Seong-Yun;Jin, Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1039-1044
    • /
    • 2000
  • In this paper, the error caused by the measurement delay in INS/GPS integrated systems with Kalman filtering is defined and analyzed through the analytical method and the simulation. It is proved that the error of measurement delay causes not only the position error but also the estimate error of the x-axis accelerometer bias when a vehicle turns. And the estimation method of the delay time and the compensation method using an extrapolation method are presented. The performance of the compensation method is shown by the analytic method and the simulation.

  • PDF

A study on the machinability of Carbon Fiber Reinforced Plastics on tool shape (공구형상에 따른 CFRP(Carbon Fiber Reinforced Plastics) 복합재료의 절삭 특성에 관한 연구)

  • Shin, Bong-Cheul;Kim, Kyu-Bok;Ha, Seok-Jae;Cho, Myeong-W
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.799-804
    • /
    • 2011
  • CFRP(Carbon Fiber Reinforced Plastics) has been used many industries aerospace, automobile, medical device and building material industries, etc. Because it is lighter than other metals and has good properties, such as rigidity, strength and wear. CFRP may be cured integrity. However, it needs postprocessing similar to drilling or endmilling for shape cutting and combination of various material. In this paper, tool dynamometer and accelerometer used to signal analysis for machining properties under various cutting conditions and tool shape changes. In addition, microscope used to verify the machined CFRP surface. As the results, it was found that the cutting force and the vibration were decreased in the increasing of cutting edge (2-flute < 4-flute < composite tool), and the good machined surface can be obtained in this experiments.

Development and Application of Photoacoustic Microscope using Accelerometer (가속도센서를 이용한 광음향현미경의 제작과 응용)

  • Kim, D.H.;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.4
    • /
    • pp.219-227
    • /
    • 1995
  • A two-dimensional photoacoustic microscope utilizing photoacoustic signals generated by periodic heating of specimen surface with Argon ion laser and measured by accelerometer has been developed. Several aluminum specimens with various defects have been examined, characteristics of the microscope have been evaluated and optimal experimental conditions have been determined by examining the dependence on several experimental conditions including the modulation frequency and the beam width of laser.

  • PDF

Recognition of Car Driving Patterns using a 3-Axis Accelerometer and Orientation Sensor (3축 가속도 센서와 방향센서를 이용한 운전패턴 인식)

  • Song, Chung-Won;Nam, Kwang-Woo;Lee, Chang-Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.7-10
    • /
    • 2012
  • 본 논문에서는 스마트폰을 이용하여 도로 주행 정보를 기록하고 운전자에게 패턴 별 주행정보를 제공하는 라이프로그(Lifelog) 형태의 서비스에 목적을 두고 있다. 운전자의 도로 주행 데이터를 데이터베이스화한 이 정보는 다양하게 이용될 수 있다. 주행 패턴 인식은 이벤트 구간 검출 과정을 통한 패턴 구간을 검출하고 가속도 센서와 방향 센서, 즉 멀티 센서 기반으로 주행패턴을 인식한다. 주행 패턴을 분석 후 시간 정보를 이용하여 촬영된 영상 데이터에서의 패턴 구간 영상을 같이 제공한다. 이렇게 패턴 구간의 센서 스트리밍 정보와 영상을 제공하면 운전자의 운전 성향 및 주행 기록을 분석하는데 이용될 수 있다. 따라서 주행패턴 인식 알고리즘을 프로토타입으로 제안한다.

  • PDF