• Title/Summary/Keyword: a Si:H TFT

Search Result 197, Processing Time 0.037 seconds

A Study on Application of Stepwise Gate Signal for a-Si Gate Driver (a-Si Gate 구동회로의 Stepwise Gate 신호적용에 대한 연구)

  • Myung, Jae-Hoon;Kwag, Jin-Oh;Yi, Jun-Sin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.272-278
    • /
    • 2008
  • This paper investigated the a-si:H gate driver with the stepwise gate signal. In 1-chip type mobile LCD application the stepwise gate signal for low power consumption can be used by adding simple switching circuit. The power consumption of the a-Si:H gate driver can be decreased by employing the stepwise gate signal in the conventional circuit. In conventional one, the effect of stepwise gate signal can decrease slew rate and increase the fluctuation of gate-off state voltage, In order to increase the slew rate and decrease the gate off state fluctuation, we proposed a new a-Si:H TFT gate driver circuit. The simulation data of the new circuit show that the slew rate and the gate-off state fluctuation are improved, so the circuit can work reliably.

LCD Embedded Hybrid Touch Screen Panel Based on a-Si:H TFT

  • You, Bong-Hyun;Lee, Byoung-Jun;Lee, Jae-Hoon;Koh, Jai-Hyun;Takahashi, Seiki;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.964-967
    • /
    • 2009
  • A new hybrid-type touch screen panel (TSP) has been developed based on a-Si:H TFT which can detect the change of both $C_{LC}$ and photo-current. This TSP can detect the difference of $C_{LC}$ between touch and no-touch states in unfavorable conditions such as dark ambient light and shadows. The hybrid TSP sensor consists of a detection area which includes one TFT for photo sensing and two TFTs for amplification. Compared to a single internal capacitive TSP or an optical sensing TSP, this new proposed hybrid-type TSP enables larger sensing margin due to embedding of both optical and capacitive sensors.

  • PDF

Schottky barrier Thin-Film-Transistors crystallized by Excimer laser annealing and solid phase crystallization method (ELA 결정화와 SPC 결정화를 이용한 쇼트키 장벽 다결정 실리콘 박막 트랜지스터)

  • Shin, Jin-Wook;Choi, Chel-Jong;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.129-130
    • /
    • 2008
  • Polycrystalline silicon (poly-Si) Schottky barrier thin film transistors (SB-TFT) are fabricated by erbium silicided source/drain for n-type SB-TFT. High quality poly-Si film were obtained by crystallizing the amorphous Si film with excimer laser annealing (ELA) or solid phase crystallization (SPC) method. The fabricated poly-Si SB-TFTs have a large on/off current ratio with a low leakage current. Moreover, the electrical characteristics of poly-Si SB TFTs are significantly improved by the additional forming gas annealing in 2 % $H_2/N_2$, because the interface trap states at the poly-Si grain boundaries and at the gate oxide/poly-Si channel decreased.

  • PDF

A Study on the Relationship between Photo Leakage Current of a-Si:H Thin Film Transistor and the Photon Energy Spectrum of various Backlight Sources (비정질 실리콘 박막 트랜지스터의 광누설 전류와 다양한 광원의 광자 에너지스펙트럼과의 관계에 관한 연구)

  • Jeong, K.S.;Kwon, S.J.;Cho, E.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04a
    • /
    • pp.70-71
    • /
    • 2009
  • Photoelectric characteristics of a hydrogenated amorphous silicon thin film transistor(a-Si:H TFT) were obtained for the illumination from various backlight sources and the results were compared and analyzed in terms of the photon energy spectral characteristics of the backlights obtained from the integration of the multiplication of the photon energy and the spectral intensity at etch wavelength. It was possible to conclude that the absorption of illuminated backlight to a-Si:H layer and the generation of electrons and holes are mainly carried out at the wavelength less than 500nm.

  • PDF

Electrical stabilities of half-Corbino thin-film transistors with different gate geometries

  • Jung, Hyun-Seung;Choi, Keun-Yeong;Lee, Ho-Jin
    • Journal of Information Display
    • /
    • v.13 no.1
    • /
    • pp.51-54
    • /
    • 2012
  • In this study, the bias-temperature stress and current-temperature stress induced by the electrical stabilities of half-Corbino hydrogenated-amorphous-silicon (a-Si:H) thin-film transistors (TFTs) with different gate electrode geometries fabricated on the same substrate were examined. The influence of the gate pattern on the threshold voltage shift of the half-Corbino a-Si:H TFTs is discussed in this paper. The results indicate that the half-Corbino a-Si:H TFT with a patterned gate electrode has enhanced power efficiency and improved aperture ratio when compared with the half-Corbino a-Si:H TFT with an unpatterned gate electrode and the same source/drain electrode geometry.

Effects of Neutral Particle Beam on Nano-Crystalline Silicon Thin Film Deposited by Using Neutral Beam Assisted Chemical Vapor Deposition at Room Temperature

  • Lee, Dong-Hyeok;Jang, Jin-Nyoung;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.254-255
    • /
    • 2012
  • Interest in nano-crystalline silicon (nc-Si) thin films has been growing because of their favorable processing conditions for certain electronic devices. In particular, there has been an increase in the use of nc-Si thin films in photovoltaics for large solar cell panels and in thin film transistors for large flat panel displays. One of the most important material properties for these device applications is the macroscopic charge-carrier mobility. Hydrogenated amorphous silicon (a-Si:H) or nc-Si is a basic material in thin film transistors (TFTs). However, a-Si:H based devices have low carrier mobility and bias instability due to their metastable properties. The large number of trap sites and incomplete hydrogen passivation of a-Si:H film produce limited carrier transport. The basic electrical properties, including the carrier mobility and stability, of nc-Si TFTs might be superior to those of a-Si:H thin film. However, typical nc-Si thin films tend to have mobilities similar to a-Si films, although changes in the processing conditions can enhance the mobility. In polycrystalline silicon (poly-Si) thin films, the performance of the devices is strongly influenced by the boundaries between neighboring crystalline grains. These grain boundaries limit the conductance of macroscopic regions comprised of multiple grains. In much of the work on poly-Si thin films, it was shown that the performance of TFTs was largely determined by the number and location of the grain boundaries within the channel. Hence, efforts were made to reduce the total number of grain boundaries by increasing the average grain size. However, even a small number of grain boundaries can significantly reduce the macroscopic charge carrier mobility. The nano-crystalline or polymorphous-Si development for TFT and solar cells have been employed to compensate for disadvantage inherent to a-Si and micro-crystalline silicon (${\mu}$-Si). Recently, a novel process for deposition of nano-crystralline silicon (nc-Si) thin films at room temperature was developed using neutral beam assisted chemical vapor deposition (NBaCVD) with a neutral particle beam (NPB) source, which controls the energy of incident neutral particles in the range of 1~300 eV in order to enhance the atomic activation and crystalline of thin films at room temperature. In previous our experiments, we verified favorable properties of nc-Si thin films for certain electronic devices. During the formation of the nc-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. The more resent work on nc-Si thin film transistors (TFT) was done. We identified the performance of nc-Si TFT active channeal layers. The dependence of the performance of nc-Si TFT on the primary process parameters is explored. Raman, FT-IR and transmission electron microscope (TEM) were used to study the microstructures and the crystalline volume fraction of nc-Si films. The electric properties were investigated on Cr/SiO2/nc-Si metal-oxide-semiconductor (MOS) capacitors.

  • PDF

A Study on the Optimization of Small Size TFT-LCD through Automatic Gamma Correction (Automatic Gamma 보정으로 인한 중소형 TFT-LCD의 최적화 연구)

  • Min, Byung-Chan;Yi, Jun-Shin;Kwag, Jin-Oh;Lee, Kon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2051-2052
    • /
    • 2006
  • 본 연구는 HHP,PDA,PMP,CNS 등등에 사용되는 중소형 A-Si:H TFT LCD 에서의 Automatic Gamma Correction 적용으로 화질 최적화 구현에 좀 더 쉽고 빠르게 접근하게 되었다. Analog Gamma String 대신 1chip Drive IC에 집적된 Gamma resister Ladder를 A-Si:H TFT-LCD Panel 특성에 보다 정확하게 적용시키기 위해 새로운 알고리즘을 개발 했으며 이를 적용시킨 회로를 Test Board로 실제 구현해서 최종결과를 도출하였다. Kick-Rack 전압을 고려한 Asymmetry-Gamma Correction 구현까지 Automatic으로 1chip Drive IC의 Register를 산출 할 수 있도록 알고리즘을 구성했다.

  • PDF

Leakage Current of Hydrogenated Amorphous Silicon Thin-Film Transistors (수소화된 비정질규소 박막트랜지스터의 누설전류)

  • Lee, Ho-Nyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.738-742
    • /
    • 2007
  • The variations in the device characteristics of hydrogenated amorphous thin-film transistors (a-Si:H TFTs) were studied according to the processes of pixel electrode fabrication to make active-matrix flat-panel displays. The off-state current was about 1 pA and the switching ratio was over $10^6$ before fabrication of pixel electrodes; however, the off-state current increased over 10 pA after fabrication of pixel electrodes. Surface treatment on SiNx passivation layers using plasma could improve the off-state characteristics after pixel electrode process. $N_2$ plasma treatment gave the best result. Charge accumulation on the SiNx passivation layer during the deposition of transparent conducting layer might cause the increase of off-state current after the fabrication of pixel electrodes.

  • PDF

A New Voltage Driving Method for Large Size and High Resolution AMOLED Displays with a-Si:H Backplane

  • Yu, S.H.;Hong, Y.J.;Lee, J.D.;Kim, H.S.;Lee, S.J.;Tak, Y.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.197-200
    • /
    • 2008
  • We propose a novel n-type a-Si:H TFT pixel circuit which is proper to AMOLED display for the large size and high resolution. Proposed pixel circuit will be suit to panel for the high resolution because of different threshold sampling method. Driving method of proposed pixel circuit is very simple like an AMLCD. Our simulation indicates that the proposed pixel circuit can compensate the Vth shift and IR rising of power line so that provide better quality image.

  • PDF

Mobility Determination of Thin Film a-Si:H and poly-Si

  • Jung, S.M.;Choi, Y.S.;Yi, J.S.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.483-490
    • /
    • 1997
  • Thin film Si has been used in sensors, radiation detectors, and solar cells. The carrier mobility of thin film Si influences the device behavior through its frequency response or time response. Since poly-Si shows the higher mobility value, a-Si:H films on Mo substrate were subjected to various crystallization treatments. Consequently, we need to find an appropriate method in mobility measurement before and after the anneal treatment. This paper investigates the carrier mobility improvement with anneal treatments and summarizes the mobility measurement methods of the a-Si:H and poly-Si film. Various techniques were investigated for the mobility determination such as Hall mobility, HS, TOF, SCLC, TFT, and TCO method. We learned that TFT and TCO method are suitable for the mobility determination of a-Si:H and poly-Si film. The measured mobility was improved by $2{\sim}3$ orders after high temperature anneal above $700^{\circ}C$ and grain boundary passivation using an RF plasma rehydrogenation.

  • PDF