• Title/Summary/Keyword: a PID control

Search Result 1,789, Processing Time 0.029 seconds

Levitation Control Simulation of a Maglev Vehicle Considering Guideway Flexibility (가이드웨이 유연성이 고려된 자기부상열차 부상제어 시뮬레이션)

  • Han, Jong-Boo;Lim, Jaewon;Kim, Chang-Hyun;Han, Hyung-Suk;Kim, Sung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • In magnetic levitation vehicles, the clearance between the magnet and track should be maintained within an allowable range through a feedback control loop. The flexibility of the guideway would introduce additional modes in the overall suspension system, resulting in dynamic interaction between the guideway vibration and the electromagnetic suspension control system. This dynamic interaction can be a serious problem, particularly at very low speeds or standstill, and may cause airgap instability. To optimize the overall system dynamics, an integrated dynamic model including mechanical and electrical parts and a flexible guideway as well as a control loop was developed. With the proposed model, airgap simulations at standstill were performed while varying the control gains, specifically with the aim of understanding the effects of gains of the PID controller on the airgap variation. The findings may be used to achieve a stable levitation controller design.

The Position Sensorless Control SRG using the Instantaneous Flux and the Pulse Voltage (순시 자속과 펄스전압 인가를 이용한 위치센서 없는 SRG의 구동)

  • Choi, Yang-Kwang;Kim, Young-Seok;Oh, Sung-Bo;Kim, Young-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1161-1164
    • /
    • 2002
  • The position information of the rotor are required while the SRG(Switched Reluctance Generator) is drived. The position information is generally provided by shaft encoder or resolver. But it is weak in the dusty, high temperator and EMI environment. Therefore, It is required for the sensor to be eliminated from SRG. In this paper, a estimation algorithm for the rotor position of the SRG is introducted and a constant DC-link voltage is controled by PID controller. The estimation algorithm is imple--mened by using the instantaneous flux profile, and the initial position is estimated by injecting high frequency pulse voltage. It is proved that the rotor position is esti--mated very well by the exeriments.

  • PDF

Fluid Heating System using High-Frequency Inverter Based on Electromagnetic Indirect Induction Heating

  • Kim Yong-Ju;Shin Dae Cheul;Kim Kee Hwan;Uchihori Y.;Kawamura Y.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.69-74
    • /
    • 2001
  • In this Paper are described the indirect induction heated boiler and induction heated hot air producer using the voltage-fed series resonant high-frequency inverter which can operate in the frequency range from 20kHz to 50kHz. A specially designed induction heater, which is composed of laminated stainless assembly with many tiny holes and interconnected spot welding points between stainless plates, is inserted into the ceramic type vessel with external working coil. This working coil is connected to the inverter and turbulence fluid through this induction heater to moving fluid generates in the vessel. The operating performances of this unique appliance in next generation and its effectiveness are evaluated and discussed from a practical point of view.

  • PDF

A Comparative Study of Operating Angle Optimization of Switched Reluctance Motor with Robust Speed Controller using PSO and GA

  • Prabhu, V. Vasan;Rajini, V.;Balaji, M.;Prabhu, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.551-559
    • /
    • 2015
  • This paper's focus is in reducing the torque ripple and increasing the average torque by optimizing switching angles of 8/6 switched reluctance motor while implementing a robust speed controller in the outer loop. The mathematical model of the machine is developed and it is simulated using MATLAB/Simulink. An objective function and constraints are formulated and Optimum turn-on and turn-off angles are determined using Particle swarm optimization and Genetic Algorithm techniques. The novelty of this paper lies in implementing sliding mode speed controller with optimized angles. The results from both the optimization techniques are then compared with initial angles with one of them clearly being the better option. Speed response is compared with PID controller.

A study on self tuning fuzzy PI and PD type controller (PI 및 PD Type Fuzzy Controller의 자기동조에 관한 연구)

  • Lee, Sang-Seock
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.3-8
    • /
    • 2000
  • This paper describes a development of self tuning scheme for PI and PO type fuzzy controllers. The output scaling factor(SF) is adjusted on-line by fuzzy rules according to the current trend of the controlled process. The rule-base for tuning the output SF is defined on error and change of error for the controlled variable using the most natural and unbiased membership functions. Simulation results demonstrate the better control performance can be achieved in comparison with Ziegler-Nichols(Z-N) PID controllers.

  • PDF

Controller Design of Single-phase Inverter Based on Pole-assignment Method (극 배치 기법을 기반으로 한 단상인버터의 제어기 설계)

  • Son, Kyoung-Min;Lee, Jin-Mok;Noh, Se-Jin;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.139-141
    • /
    • 2008
  • This paper presents a PID controller and PI-PI dual loop controller for a single-phase inverter. The control parameters of conventional controllers are very difficult to make. But parameters of controllers based on pole-assignment are easy to make. Simulation results are presented for the system under R-L load, no load and change reference voltage.

  • PDF

Hardware-In-The-Loop Simulation (HILS) Based Design and Robustness Evaluation of an Intelligent Gantry Crane System

  • ;Jalani, Jamaludin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1729-1734
    • /
    • 2005
  • The use of gantry crane systems for transporting payload is very common in industrial application. However, moving the payload using the crane is not an easy task especially when strict specifications on the swing angle and on the transfer time need to be satisfied. To overcome this problem, this paper describes development of an intelligent gantry crane system based on the mechatronic design. A lab-scale gantry crane is designed and then its intelligent controllers are developed. Fuzzy logic controllers are adopted, designed and implemented for controlling payload position as well as the swing angle of the gantry crane. The performance of the intelligent gantry crane system is evaluated on a hardware-in-the-loop simulation (HILS) environment. Moreover robustness of the proposed system is also evaluated. The result shows that the intelligent gantry crane system designed based on the mechatronic design approach has better performance compared with the automatic gantry crane system controlled by classical PID controllers. Moreover simulation result shows that the intelligent gantry crane system is more robust to parameter variation than the automatic gantry crane system.

  • PDF

Adaptive Sliding Mode Observer for DC-Link Voltage Control of Switched Reluctance Generator without Position Sensor (적응 슬라이딩 모드 관측기를 이용한 Switched Reluctance Generator의 위치 센서 없는 구동에 관한 연구)

  • Choi, Yang-Kwang;Kim, Young-Seok;Kim, Young-Jo;Choi, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.179-182
    • /
    • 2002
  • The position information of the rotor are required while the SRG(Switched Reluctance Generator) is drived. The position information is generally provided by shaft encoder or resolver. But it is weak in the dusty, high temperator and EMI environment. Therefore, the sensor is able to required to eliminated from the SRG. In this paper, a estimation algorithm for the rotor position of the SRG is introducted and a constant DC-link voltage is controled by PID controller. The estimation algorithm is implemened by the adaptive sliding observer and that it is able to estimate the rotor position well is proved by the simulation.

  • PDF

Analysis of 3 Phase utility interactive photovoltaic power generation system (3상 태양광발전시스템의 계통연계운전 해석)

  • Kim, Woo-Hyun;Kim, Chang-Il;Kim, Bong-Tae;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.236-238
    • /
    • 1999
  • This paper presents a model and analysis results of 3 phase utility interactive photovoltaic power generation system. The control system is composed of feed forward, feedback and PID system. The voltage source inverter system provides sinusoidal PWM at current for the loads of utility system. A phase to ground fault and 3 phase fault are analyzed, and the results are discussed.

  • PDF

A Study on the Determination of Temperature Control Gains by Experiment for a Gas Engine Cogeneration System (가스엔진 열병합시스템의 온도제어변수 결정에관한 실험적연구)

  • 장상준;유재석;방효선;한정옥
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.199-206
    • /
    • 1995
  • 200kW급 가스엔진 열병합시스템에서 엔진 냉각수는 엔진을 냉각시키는 기능 뿐아니라 배열회수용 열원으로 사용된다. 전력부하나 냉·난방 부하가 변할 때 엔진 냉각수의 온도가 민감하게 변하므로 이를 일정하게 제어하기 위하여 PID 제어기를 사용하고 있다. 본 연구는 이 제어기의 적정 이득값(gain)을 설정하기 위하여 공정 전달함수를 실험적방법을 이용하여 일차시간지연함수(First Order Plus Dead Time)로 근사한 후 여러 조율방법을 사용하여 이득값을 구하였다. 이 이득값과 전달함수를 가지고 공정모사기인 “MATLAB”을 사용하여 시스템에 적합한 적정이득값을 선정 하였으며 실증실험 결과 시스템의 온도동특성이 안정됨을 보였다.

  • PDF