• Title/Summary/Keyword: a 3D detector

Search Result 413, Processing Time 0.035 seconds

Design of W-Band Diode Detector (W-Band 다이오드 검출기 설계)

  • Choi, Ji-Hoon;Cho, Young-Ho;Yun, Sang-Won;Rhee, Jin-Koo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.278-284
    • /
    • 2010
  • In this paper, a millimeter-wave detector using zero-bias schottky diode is designed and fabricated at W-band. It consists of LNA(Low Noise Amplifier) and detector module to improve sensitivity. LNA case with a highly stop-band characteristic is designed to prevent the oscillation by LNA MMIC chip. Diode detector of planar structure is fabricated for the easy connection with LNA module and zero bias Schottky diode is utilized. In practice, the fabricated diode detector have shown the detection voltage of 20~500 mV to the RF input power of -45~-20 dBm. The proposed W-band detector can be applicable to the passive millimeter image system.

Robust Viewpoint Estimation Algorithm for Moving Parallax Barrier Mobile 3D Display (이동형 패럴랙스 배리어 모바일 3D 디스플레이를 위한 강인한 시청자 시역 위치 추정 알고리즘)

  • Kim, Gi-Seok;Cho, Jae-Soo;Um, Gi-Mun
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.817-826
    • /
    • 2012
  • This paper presents a robust viewpoint estimation algorithm for Moving Parallax Barrier mobile 3D display in sudden illumination changes. We analyze the previous viewpoint estimation algorithm that consists of the Viola-Jones face detector and the feature tracking by the Optical-Flow. The sudden changes in illumination decreases the performance of the Optical-flow feature tracker. In order to solve the problem, we define a novel performance measure for the Optical-Flow tracker. The overall performance can be increased by the selective adoption of the Viola-Jones detector and the Optical-flow tracker depending on the performance measure. Various experimental results show the effectiveness of the proposed method.

Detector Mount Design for IGRINS

  • Oh, Jae Sok;Park, Chan;Cha, Sang-Mok;Yuk, In-Soo;Park, Kwijong;Kim, Kang-Min;Chun, Moo-Young;Ko, Kyeongyeon;Oh, Heeyoung;Jeong, Ueejeong;Nah, Jakyoung;Lee, Hanshin;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.177-186
    • /
    • 2014
  • The Immersion Grating Infrared Spectrometer (IGRINS) is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG Focal Plane Array (H2RG FPA) detectors. We present the design and fabrication of the detector mount for the H2RG detector. The detector mount consists of a detector housing, an ASIC housing, a Field Flattener Lens (FFL) mount, and a support base frame. The detector and the ASIC housing should be kept at 65 K and the support base frame at 130 K. Therefore they are thermally isolated by the support made of GFRP material. The detector mount is designed so that it has features of fine adjusting the position of the detector surface in the optical axis and of fine adjusting yaw and pitch angles in order to utilize as an optical system alignment compensator. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the structural and thermal analysis, the designed detector mount meets an optical stability tolerance and system thermal requirements. Actual detector mount fabricated based on the design has been installed into the IGRINS cryostat and successfully passed a vacuum test and a cold test.

A Study on the Development and Accuracy Improvement of an IR Combustible Gas Leak Detector with Explosion Proof (방폭형 적외선 가연성가스 누출검지기 개발 및 정확도 향상 연구)

  • Park, Gyou-Tae;Lyu, Geun-Jun;Jo, Young-Do;Kwon, Jeong-Rock;Ahn, Sang-Guk;Kim, Hie-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.1-12
    • /
    • 2014
  • In this paper, we developed an explosion proof type and portable combustible gas leak detector and proposed an algorithm to improve the accuracy for measuring gaseous concentrations. The nation's first we developed an infrared gas leak detector with explosion proof standard(Ex d ib) and improved measuring accuracy by using linearization recursion equation and 2nd Lagrange interpolation polynomial. Together, we advanced their performances and added their easy functions after investigating field demands. To compare our and other company's detectors, we performed measurement tests with eight standard gases made by Korea Gas Safety Corporation. We demonstrated the excellence of our instruments in measuring accuracy other than detecters through experimental results.

Performance Evaluation of a Selenium(a-Se) Based Prototype Digital Radiation Detector (비정질 셀레늄 기반 디지털 방사선 검출기의 성능 평가)

  • Park, Ji-Koon;Kang, Sang-Sik;Cho, Sung-Ho;Shin, Jung-Wook;Kim, So-Yeong;Son, Dae-Woong;Nam, Sang-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.300-305
    • /
    • 2007
  • In this study, we have studied the fabrication and the performance evaluation of digital radiation detector of the based on selenium (a-Se) prototype which is widely researched about recently. The detector was fabricated using amorphous selenium in the specification of active area size $7{\times}8.5"$, pixel pitch $139{\mu}m$, and 12 bit ADC. In order for the performance evaluation of the fabricated detector, we used radiation quality RQA 5 that is suggested by the International Electrotechnical Commission (IEC), and evaluated modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). Concerning MTF measurement, we used slit camera (Nuclear Associates, Model : 07-624-2222), and evaluated in the slit method. Also so as to compare the performance evaluation on the detector fabricated in this study, we used Hologic Direct-Ray (DR-1000) and GE Revolution XQ/I system, and evaluated and compared in the same method MTF, NPS, and DQE which are image quality factors. And as a result, the MTF of each detector In Nyquist frequency were evaluated to be 58% (at 3.5 lp/mm) in the case of DR-1000 and 65% (at 2.5 lp/mm) in the case of XQ/I, and that for the detector fabricated in this study was evaluated to be 36% (at 3.51 lp/mm). Also in the case of DQE(0), the detector fabricated in this study, DR-1000 of Hologic company, and XQ/I system of GE company respectively were evaluated as 36%, 32%, and 50%.

Development of a Highly Active Fluorescence-Based Detector for Yeast G Protein-Coupled Receptor Ste2p

  • Hong, Jin Woo;Ahn, Hee Jun;Baek, Jee Su;Hong, Eun young;Jin, Dong Hoon;Khang, Yong Ho;Hong, Nam Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1589-1603
    • /
    • 2018
  • Twenty analogs of $[Orn^6,D-Ala^9]{\alpha}-factor$ were synthesized and assayed for their biological activities: seven analogs of $[Orn^6,X^9]{\alpha}-factor$, seven analogs of $[X^6,D-Ala^9]{\alpha}-factor$, five analogs of $[X^5,X^6,D-Ala^9]{\alpha}-factor$, and native ${\alpha}-factor$ (X = amino acids). Their biological activities (halo, gene induction, and affinity) were measured using S. cerevisiae Y7925 and LM102 and compared with those of native ${\alpha}-factor$ (100%). G protein-coupled receptor was expressed in strain LM102 containing pESC-LEU-STE2 vector. $[Dap^6,D-Ala^9]{\alpha}-factor$ with weak halo activity (10%) showed the highest receptor affinity (> 230%) and the highest gene induction activity (167%). $[Arg^6,D-Ala^9]{\alpha}-factor$ showed the highest halo activity (2,000%). The number of active binding sites per cell (about 20,000 for strain LM102) was determined using a newly-designed fluorescence-based detector, $[Arg^6,D-Ala^9]{\alpha}-factor-Edan$, with high sensitivity (12,500-fold higher than the absorption-based detector $[Orn^6]{\alpha}-factor-[Cys]_3$).

Evaluation of the Accuracy of Distance Measurements on 3D Volume-rendered Image of Human Skull Using Multi-detector CT: Effects of Acquisition Section Thickness and Reconstruction Section Thickness

  • Haijo Jung;Kim, Hee-Joung;Lee, Sang-Ho;Kim, Dong-Wook;Soonil Hong;Kim, Dong-Hyeon;Son, Hye-Kyung;Wonsuk Kang;Kim, Kee-Deog
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.457-460
    • /
    • 2002
  • The image quality of three-dimensional (3D) images has been widely investigated by the qualitative analysis method. A need remains for an objective and quantitative method to assess the image quality of 3D volume-rendered images. The purpose of this study was to evaluate the quantitative accuracy of distance measurements on 3D volume-rendered images of a dry human skull by using multi-detector computed tomography (MDCT). A radiologist measured five times the twenty-one direct measurement line items composed among twelve reference points on the skull surface with a digital vernier caliper. The water filled skull specimen was scanned with a MDCT according to the section thicknesses of 1.25, 2.50, 3.75, and 5.00 mm for helical (high quality; pitch 3:1) scan mode. MDCT data were reconstructed with its acquisition section thickness and with 1.25 mm section thickness for all scans. An observer also measured seven times the corresponding items on 3D volume-rendered images with measuring tools provided by volumetric analysis software. The quantitative accuracy of distance measurements on the 3D volume-rendered images was statistically evaluated (p-value < 0.05) by comparatively analyzing these measurements with the direct distance measurements. The accuracy of distance measurements on the 3D volume-rendered MDCT images acquired with 1.25, 2.50, 3,75 and 5.00 mm section thickness and reconstructed with its section thickness were 48%, 33%, 23%, and 14%, respectively. Meanwhile, there were insignificant statistical differences in accuracy of distance measurements among 3D volume-rendered images reconstructed with 1.25 mm section thickness for the each acquisition section thickness. MDCT images acquired with thick section thickness and reconstructed with thin section thickness in helical scan mode should be effectively used in medical planning of 3D volume-rendered images. The quantitative analysis of distance measurement may be a useful tool for evaluating the quantitative accuracy and the defining optimal parameters of 3D volume-rendered CT images.

  • PDF

Assaying of SNM using Simultaneous Detection of Fission Neutrons and Gammas by Employing a Novel Phoswich Detector

  • Sonu;Mohit Tyagi;A. Kelkar;A. Sahu;M. Sonawane;P.S. Sarkar;A. Pandey;D.B. Sathe;G.D. Patra;T. Vincent;S.G. Singh;R.B. Bhatt
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2662-2669
    • /
    • 2023
  • For the precise measurements of special nuclear materials (SNM) including Pu and Am isotopes, we have used phoswich detector combination of two single crystal scintillators of Gd3Ga3Al2O12:Ce and CsI:Tl. High detection efficiency and sensitivity along with high figure of merit for the discrimination of these phoswich detectors ensures the detection and discrimination of thermal neutrons and gammas from spontaneous fission of Pu and other isotopes in presence of high gamma background. Using this detector, the low energy gammas, which is stopped completely in 1mm thick disc of GGAG, can be also discriminated from high energies gamma and shows linearity in wide range of sample quantities. By changing only the appropriate shielding, the similar setup was used for thermal neutron detection and shows a very good linearity over wide range. The quantity of a test sample was also calculated accurately by using the measured calibrated plot.

Design of a 6-bit 500MS/s CMOS A/D Converter with Comparator-based Input Voltage Range Detection Circuit

  • Dae, Si;Yoon, Kwang Sub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.706-711
    • /
    • 2014
  • A low power 6-bit flash ADC that uses an input voltage range detection algorithm is described. An input voltage level detector circuit has been designed to overcome the disadvantages of the flash ADC which consume most of the dynamic power dissipation due to comparators array. In this work, four digital input voltage range detectors are employed and each input voltage range detector generates the specific clock signal only if the input voltage falls between two adjacent reference voltages applied to the detector. The specific clock signal generated by the detector is applied to turn the corresponding latched comparators on and the rest of the comparators off. This ADC consumes 68.82 mW with a single power supply of 1.2V and achieves 4.3 effective number of bits for input frequency up to 1 MHz at 500 MS/s. Therefore it results in 4.6 pJ/step of Figure of Merit (FoM). The chip is fabricated in 0.13-um CMOS process.

Experimental and Simulated Efficiency of a HPGe Detector in the Energy Range of $0.06{\sim}11$ MeV

  • Park Chang Su;Sun Gwang Min;Choi H.D.
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.234-242
    • /
    • 2003
  • The full energy peak efficiency of a hyper pure germanium (HPGe) detector was calibrated in a wide energy range from 0.06 to 11 MeV. Both the experimental technique and the Monte Carlo method were used for the efficiency calibration. The measurement was performed using the standard radioisotopes in the low energy region of $60{\sim}1408$ keV, which was further extended up to 11 MeV by using the $^{14}N(n,r)\;and\;^{35}Cl(n,r)$ reactions. The GEANT Monte Carlo code was used for efficiency calculation. The calculated efficiency had the same dependency on the r-ray energy with the measurement, and the discrepancy between the calculation and the measurement was minimized by fine-tuning of the detector geometry. From the calculated result, the efficiency curve of the HPGe detector was reliably determined particularly in the high energy region above several MeV, where the number of measured efficiency points is relatively small despite the wide energy region. The calculated efficiency agreed with the measurement within about $7\%$. In addition to the efficiency calculation, the origin of the local minimum near 600 keV on the efficiency curve was analyzed as a general characteristics of a HPGe detector.