• Title/Summary/Keyword: Zwitterionic tetrahedral intermediate

Search Result 28, Processing Time 0.025 seconds

Kinetics and Mechanism of Pyridinolysis of Aryl Dithiocyclopentanecarboxylates in Acetonitrile

  • Oh, Hyuck-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2357-2360
    • /
    • 2010
  • Kinetic studies on the pyridinolysis of aryl dithiocyclopentanecarboxyaltes 2 were carried out at $60.0^{\circ}C$ in acetonitrile. In the aminolysis of 2, the $\beta_X$ values were 0.5 - 0.8 with anilines, and there was no breakpoint. However, in the pyridinolysis of 2, biphasic Bronsted plots were obtained, with a change in slope from a large value ($\beta_X{\cong}0.7$) to a small value ($\beta_X{\cong}0.4$) at $pK_{a}^0$ = 5.2. This was attributed to a change in the rate-limiting step from breakdown to the formation of a zwitterionic tetrahedral intermediate, $T^{\pm}$, in the reaction path, with an increase in the basicity of the pyridine nucleophile. An obvious change in the cross-interaction constant ${\rho}_{XZ}$ from a large positive ($\rho_{XZ}$ = +1.02) value to a small negative value (${\rho}_{XZ}$ = -0.17) supports the proposed mechanistic change.

Kinetics and Mechanism of the Aminolysis of O-Methyl-S-Phenylthiocarbonates in Methanol

  • Song, Ho-Bong;Choi, Moon-Ho;Koo, In-Sun;Oh, Hyuck-Keun;Lee, Ik-choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.91-94
    • /
    • 2003
  • Kinetic studies of the reaction of O-methyl-S-phenylthiocarbonates with benzylamines in methanol at 45.0 ℃ have been carried out. The reaction proceeds by a stepwise mechanism in which the rate-determining step is the breakdown of the zwitterionic tetrahedral intermediate, $T^{\pm}$, with a hydrogen-bonded four-center type transition state (TS). These mechanistic conclusions are drawn based on (ⅰ) the large magnitude of ${\rho}_X\;and\;{\rho}_Z$, (ⅱ) the normal kinetic isotope effects $(k_H/k_D\;>\;1.0)$ involving deuterated benzylamine nucleophiles, (ⅲ) the positive sign of ${\rho}_{XZ}$ and the larger magnitude of ${\rho}_{XZ}$ than that for normal $S_N2$ processes, and lastly (ⅳ) adherence to the reactivity-selectivity principle (RSP) in all cases.

Kinetics and Mechanism of the Pyridinolysis of Aryl Cyclopropanecarboxylates in Acetonitrile

  • Koh, Han-Joong;Kang, Suk-Jin;Kim, Cheol-Ju;Lee, Hai-Whang;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.925-930
    • /
    • 2003
  • Kinetic studies of the reaction of Z-aryl cyclopropanecarboxylates with X-pyridines in acetonitrile at 55.0 ℃ have been carried out. The reaction proceeds by a stepwise mechanism in which the rate-determining step is the breakdown of the zwitterionic tetrahedral intermediate, $T^{\pm}$. These mechanistic conclusions are drawn base on (i) the large magnitude of ρx and ρz, (ii) the positive sign of ρxz and the larger magnitude of ρxz than normal $S_N2$ processes, (iii) a small positive enthalpy of activation, Δ$H^≠$, and a large negative, Δ$S^≠$, and lastly (iv) adherence to the reactivity-selectivity principle (RSP) in all cases.

Nucleophilic Substitution Reactions of Aryl Thiophene-2-carbodithioates with Pyridines in Acetonitrile

  • Oh, Hyuck-Keun;Lee, Jae-Myon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.203-206
    • /
    • 2004
  • The kinetics of reactions between Z-aryl thiophene-2-carbodithioates and X-pyridines in acetonitrile at 60.0 $^{\circ}C$ have been investigated. The Bronsted plots obtained for the pyridinolysis of aryl thiophene-2-carbodithioates are curved, with the center of curvature at $pK_a$ ~ 5.2 ($pK_a^{\circ}$). The Bronsted plots for these nucleophilic reactions show a change in slope from a large ( ${\beta}_X{\cong}$0.78-0.87) to a small ( ${\beta}_X{\cong}$0.33-0.35) value, which can be attributed to a change in the rate-determining step from breakdown to formation of a zwitterionic tetrahedral intermediate in the reaction path as the basicity of the pyridine nucleophile increases. A clear-cut change in the crossinteraction constants, ${\rho}_{XZ}$, from +0.92 to -0.23 supports the proposed mechanistic change. The breakpoint at $pK_a$ = 5.2 for R = thiophene ring in the present work is in agreement with those for the pyridinolysis of R = Me and 2-furyl, and attests to the insignificant effects of acyl group, R, on the breakpoint.

Kinetic Studies on the Structure-Reactivity of Aryl Dithiomethylacetates

  • Oh, Hyuck-Keun;Park, Jie-Eun;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1041-1045
    • /
    • 2004
  • Kinetic studies of the pyridinolysis $(XC_5H_4N)$ of aryl dithiomethylacetates $(CH_3CH_2C(=S)SC_6H_4Z,\;1)$ are carried out in acetonitrile at $60.0^{\circ}C$. A biphasic Bronsted plot is obtained with a change in slope from a large $({\beta}X\;{\cong}\;0.8)$ to a small $({\beta}X\;{\cong}\;0.2)$ value at $pK_a^{\circ}$ = 5.2, which is attributed to a change in the rate limiting step from breakdown to formation of a zwitterionic tetrahedral intermediate, $T^{\pm}$, in reaction path as the basicity of the pyridine nucleophile increases. This mechanism is supported by the change of the cross-interaction constant ${\rho}xz$ from a large positive ( ${\rho}xz$ = +1.36) for the weakly basic pyridines to a small negative ( ${\rho}_xz$ = -0.22) value for the strongly basic pyridines. The magnitudes of ${\rho}z$ and activation parameters are also consistent with the proposed mechanism.

Kinetics and Mechanism of the Pyridinolysis of Aryl Cyclobutanecarboxylates in Acetonitrile

  • koh, Han-Joong;Han, Kwang-Lae;Lee, Hai-Whang;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.715-720
    • /
    • 2002
  • Kinetic studies of the reaction of Z-aryl cyclobutanecarboxylates with X-pyridines in acetonitrile at $55.0^{\circ}C$ have been carried out. The reaction proceeds by a stepwise mechanism in which the rate-determining step is the breakdown of the zwitterion ic tetrahedral intermediate, T $\pm$ . These mechanistic conclusions are drawn based on (i) the large magnitude of ${\rho}X$ and $\rhoZ$, (ⅱ) the positive sign of ${\rho}XZ$ and the larger magnitude of $\rhoXZ$ than normal SN2 processes, (ⅲ) a small positive enthalpy of activation, ${\Delta}H{\neq}$, and a large negative, ${\Delta}S{\neq}$, and lastly (iv) adherence to the reactivity-selectivity principle (RSP) in all cases.

Kinetics and Mechanism of the Aminolysis of O-Methyl S-Aryl Thiocarbonates in Acetonitrile

  • Oh, Hyuck-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1539-1542
    • /
    • 2011
  • The aminolysis of O-methyl S-aryl thiocarbonates with benzylamines are studied in acetonitrile at -45.0$^{\circ}C$. The ${\beta}_X$(${\beta}_{nuc}$) values are in the range 0.62-0.80 with a negative cross-interaction constant, ${\rho}_{XZ}$ = -0.42, which are interpreted to indicate a concerted mechanism. The kinetic isotope effects involving deuterated benzylamine nucleophiles ($XC_6H_4CH_2ND_2$) are large, $k_H/k_D$ = 1.29-1.75, suggesting that the N-H(D) bond is partially broken in the transition state by forming a hydrogen-bonded four-center cyclic structure. The concerted mechanism is enforced by the strong push provided by the MeO group which enhances the nucleofugalities of both benzylamine and arenethiolate from the putative zwitterionic tetrahedral intermediate.

A Kinetic Study on Ethylaminolysis of Phenyl Y-Substituted-Phenyl Carbonates: Effect of Leaving-Group Substituents on Reactivity and Reaction Mechanism

  • Song, Yoon-Ju;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1722-1726
    • /
    • 2013
  • A kinetic study on nucleophilic substitution reactions of phenyl Y-substituted-phenyl carbonates (5a-5j) with ethylamine in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$ is reported. The plots of $k_{obsd}$ vs. [amine] are linear for the reactions of substrates possessing a strong electron-withdrawing group (EWG) but curve upward for those of substrates bearing a weak EWG, indicating that the electronic nature of the substituent Y in the leaving group governs the reaction mechanism. The reactions have been concluded to proceed through a stepwise mechanism with one or two intermediates (a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$) depending on the nature of the substituent Y. Analysis of Bronsted-type plots and dissection of $k_{obsd}$ into microscopic rate constants have revealed that the reactions of substrates possessing a strong EWG (e.g., 5a-5f) proceed through $T^{\pm}$ with its formation being the rate-determining step, while those of substrates bearing a weak EWG (e.g., 5g-5j) proceed through $T^{\pm}$ and $T^-$.

Aminolysis of Y-Substituted Phenyl 2-Thiophenecarboxylates and 2-Furoates: Effect of Modification of Nonleaving Group from 2-Furoyl to 2-Thiophenecarbonyl on Reactivity and Mechanism

  • Um, Ik-Hwan;Min, Se-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.585-589
    • /
    • 2008
  • Second-order rate constants (kN) have been measured for reactions of Y-substituted phenyl 2-thiophenecarboxylates (6a-h) with morpholine and piperidine in 80 mol % H2O/20 mol % DMSO at 25.0 0.1 oC. The Brnsted-type plot for the reactions of 6a-h with morpholine is linear with b lg = 1.29, indicating that the reactions proceed through a tetrahedral zwitterionic intermediate (T?). On the other hand, the Brnsted-type plot for the reactions of 6a-h with piperidine exhibits a downward curvature, implying that a change in the rate-determining step occurs on changing the substituent Y in the leaving group. Dissection of kN into microscopic rate constants (i.e., k1 and k2/k1 ratio) has revealed that k1 is smaller for the reactions of 6a-h than for those of Y-substituted phenyl 2-furoates (5a-h), while the k2/k1 ratio is almost the same for the reactions of 5a-h and 6a-h. It is also reported that modification of the nonleaving group from the furoyl (5a-h) to the thiophenecarbonyl (6a-h) does not influence pKao (defined as the pKa at the center of the Brnsted curvature) as well as the k2/k1 ratio.

Nucleophilic Substitution Reactions of α-Chloroacetanilides with Pyridines in Dimethyl Sulfoxide

  • Dey, Shuchismita;Adhikary, Keshab Kumar;Kim, Chan-Kyung;Lee, Bon-Su;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.776-780
    • /
    • 2005
  • The kinetic studies of the reactions of $\alpha$-chloroacetanilides $(YC_6H_4NRC(=O)CH_2Cl;\;R=H\;(4)\;and\;CH_3$ (5)) with pyridines have been carried out in dimethyl sulfoxide at 95 ${^{\circ}C}$. The pyridinolysis rates are faster with 4 than with 5 whereas the aminolysis rates with benzylamines are faster with 5 than with 4. The Brønsted ${\beta}_X$ values are in the range from 0.30 to 0.32 and the cross-interaction constants, $\rho_{XY}$, are small negative values; $\rho_{XY}$ = -0.06 and -0.10 for 4 and 5, respectively. Based on these and other results, the pyridinolyses of $\alpha$-chloroacetanilides are proposed to proceed via a stepwise mechanism with rate-limiting addition of the nucleophile to the carbonyl group to form zwitterionic tetrahedral intermediate ($T^{\pm}$) followed by a bridged type transition state to expel the leaving group.