• 제목/요약/키워드: Zr-based alloys

검색결과 121건 처리시간 0.025초

Laves phase계 수소저장합금의 전기화학적 수소화 반응 매카니즘에 관한 연구 (A Study on the Electrochemical Hydrogenation Reaction Mechanism of the Laves Phase Hydrogen Storage Alloys)

  • 이지열;김찬중;김대용
    • 한국수소및신에너지학회논문집
    • /
    • 제8권1호
    • /
    • pp.31-41
    • /
    • 1997
  • In order to investigate the mechanism of electrochemical hydrogenation reaction on Zr-based Laves phase hydrogen storage alloy electrodes, electrochemical charge/discharge characteristics, potentiostatic/dynamic polarizations and electrocehmical impedance spectroscopy(EIS) of Zr-Ti-Mn-Ni and Zr-Ti-Mn-Ni-M(M=Fe, Co, Al) alloys were examined. Electrochemical discharge capacities of the alloys were quite different with gas charge capacities. Therefore, it was considered that discharge capacities of the alloys depend on electrochemical kinetic factors rather then thermodynamic ones. Discharge efficiencies were increased linearly with exchange current densities. The results of potentiostatic/dynamic polarization measurements showed that electrochemical charge and discharge reaction of Zr-based Laves phase hydrogen storage alloys is controlled by charge transfer process at the electrode surface. The EIS measurements also confirmed this result.

  • PDF

가토의 경골에 이식된 새로운 티타늄계 합금 주위의 골형성에 관한 형태학적 연구 (A HISTOMORPHOMETRIC STUDY OF BONE APPOSITION TO NEWLY DEVELOPED TI-BASED ALLOYS IN RABBIT BONE)

  • 김태인
    • 대한치과보철학회지
    • /
    • 제36권5호
    • /
    • pp.701-720
    • /
    • 1998
  • Research advances in dental implantology have led to the development of several different types of materials and it is anticipated that continued research will lead to advanced dental implant materials. Currently used pure titanium has relatively low hardness and strength which may limit its ability to resist functional loads as a dental implant. Ti-6Al-4V also has potential problems such as corrosion resistance. osseointegration properties and neurologic disorder due to aluminium and vanadium, known as highly toxic elements, contained in Ti-6Al-4V. Newly developed titanium based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) which do not contain toxic metallic components were designed by the Korea Institute of Science and Technology (KIST) with alloy design techniques using Zr, Nb, Ta, Pd, and In which are known as non-toxic elements. Biocompatibility and osseointegration properties of these newly designed alloys were evaluated after implantation in rabbit femur for 3 months. The conclusions were as follows : 1. Mechanical properties of the new designed Ti based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) demonstrated close hardness and tensile strength values to Ti-6Al-4V. 2. New desinged experimental alloys showed stable corrosion resistance similar to the pure Ti but better than Ti-6Al-4V. However, the corrosion rate was higher for the new alloys. 3. Cell culture test showed that the new alloys have similar cell response compared with pure Ti and Ti-6Al-4V with no cell adverse reaction. 4. New designed alloys showed similar bone-metal contact ratio and osseointegration properties compared to pure Ti and Ti-6Al-4V after 3 months implantation in rabbit femur. 5. Four different surface treatments of the metals did not show any statistical difference of the cell growth and bone-metal contact ratio.

  • PDF

DV-Xα 분자궤도법으로 설계한 생체용 Ti-Ag-Zr 합금 특성 평가 (A Study on the Properties of Design for the Biomaterial Ti-Ag-Zr Alloys Using DV-Xα Molecular Orbital Method)

  • 백민숙;윤동주;김병일
    • 한국재료학회지
    • /
    • 제24권4호
    • /
    • pp.175-179
    • /
    • 2014
  • Ti and Ti alloys have been extensively used in the medical and dental fields because of their good corrosion resistance, high strength to density ratio and especially, their low elastic modulus compared to other metallic materials. Recent trends in biomaterials research have focused on development of metallic alloys with elastic modulus similar to natural bone, however, many candidate materials also contain toxic elements that would be biologically harmful. In this study, new Ti based alloys which do not contain the toxic metallic components were developed using a theoretical method (DV-$X{\alpha}$). In addition, alloys were developed with improved mechanical properties and corrosion resistance. Ternary Ti-Ag-Zr alloys consisting of biocompatible alloying elements were produced to investigate the alloying effect on microstructure, corrosion resistance, mechanical properties and biocompatibility. The effects of various contents of Zr on the mechanical properties and biocompatibility were compared. The alloys exhibited higher strength and corrosion resistance than pure Ti, had antibacterial properties, and were not observed to be cytotoxic. Of the designed alloys' mechanical properties and biocompatibility, the Ti-3Ag-0.5Zr alloy had the best results.

지르코늄합금의 부식특성에 미치는 Cu 영향 평가 (Evaluation of Cu Effect on Corrosion Characteristics of Zr Alloys)

  • 김현길;최병권;정용환
    • 한국재료학회지
    • /
    • 제14권7호
    • /
    • pp.462-469
    • /
    • 2004
  • The effect of Cu addition on the corrosion characteristics of Zr alloys that developed for nuclear fuel cladding in KAERI (Korea Atomic Energy Research Institute) was evaluated. The alloys having different element of Nb, Sn, Fe, Cr and Cu were manufactured and the corrosion tests of the alloys were performed in static autoclave at $360^{\circ}C$, distilled water condition. The alloys were also examined for their microstructures using the optical microscope and the TEM equipped with EDS and the oxide property was characterized by using X-ray diffraction. From the result of corrosion test more than 450 days, the corrosion rate of the Zr-based alloys was changed with alloying element such as Nb, Sn, Fe, Cr and especially affected by Cu addition. The corrosion resistance was increased with increasing the Cu content and the tetragonal $ZrO_2$ layer was more stabilized on the Cu-containing alloys.

냉간가공과 베타급냉된 Zr-Sn 합금의 재결절 거동 (Recrystallization Behavior of Cold-worked and $\beta$-Quenched Zr-Zn Alloys)

  • 이명호;정용환
    • 한국재료학회지
    • /
    • 제10권11호
    • /
    • pp.725-731
    • /
    • 2000
  • 냉간가공과 베타급냉된 Zr-Sn 합금의 재결정 거동을 미소경도 시험과 미세 조직 관찰 방법에 의해서 조사하였다. 베타급냉 처리된 합금의 재결정은 냉간가공된 합금의 재결정보다 늦게 일어났는데, 이는 냉간 가공에 의해 도입된 축적에너지가 더 높다는 것을 의미한다. 냉간가공재와 베타급냉재의 초기 경도는 동일하지라도 재결정거동은 아주 다르게 나타났다. TEM 조직관찰 결과를 근거로 할 때, 냉간가공재는 subgrain합체에 의해서 재결정이 일어나며 베타급냉재는 응력유기 입계이동에 의해서 재결정이 일어나는 것으로 밝혀졌다.

  • PDF

Zr-V계 Laves상 수소저장합금의 전기화학적 성질 (Electrochemical Properties of Laves Phase Zr-V System Hydrogen Absorbing Alloys)

  • 박찬교;조태환
    • 한국수소및신에너지학회논문집
    • /
    • 제8권2호
    • /
    • pp.51-56
    • /
    • 1997
  • Laves상 $ZrV_2$합금은 다량의 수소를 저장하지만 수소와의 결합력이 강하여 Ni-MH전지의 전극으로는 부적당하다. 전극에 응용하기 위해 $ZrV_2$합금중의 V의 일부를 Ni로 치환하여 수소와의 결합력을 약하게 하였다. 이와 같은 Zr-V-Ni계 합금에 대해 전기화학적 성질, 전극의 평형전위로부터 합금중의 수소의 열역학적성질 및 2차전지전극에의 응용가능성을 조사하였다.

  • PDF

$AB_5$계 수소저장합금의 Zr, Ti 및 V 첨가에 따른 전기화학적특성 (Electrochemical properties of $AB_5$-type Hydrogen alloys upon addition of Zr, Ti and V)

  • 김대환;조성욱;정소이;박충년;최전
    • 한국수소및신에너지학회논문집
    • /
    • 제17권1호
    • /
    • pp.31-38
    • /
    • 2006
  • There are two types of metal hydride electrodes as a negative electrode in a Ni-MH battery, $AB_2$ Zr-based Laves phases and $AB_5$ LM(La-rich mischmetal)-based alloys. The $AB_5$ alloy electrodes have characteristic properties such as a large discharge capacity per volume, easiness in activation, long cycle life and a low cost of alloy. However they have a relatively small discharge capacity per weight. The $AB_2$alloy electrodes have a much higher discharge capacity per weight than $AB_5$ alloy electrodes, however they have some disadvantages of poor activation behavior and cycle life. Therefore, in order to improve the discharge capacity of the $AB_5$ alloy electrode the Zr, Ti and V which are the alloying elements of the $AB_2$ alloys were added to the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy which was chosen as a $AB_5$ alloy with a high capacity. The addition of Zr, Ti and V to $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy improved the activation to be completed in two cycles. The discharge capacities of Zr 0.02, Ti 0.02 and V 0.1 alloys in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) were respectively 346, 348 and 366 mAh/g alloy. The alloy electrodes, Zr 0.02, Ti 0.05 and V 0.1 in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V), have shown good cycle property after 200 cycles. The rate capability of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloy electrodes were very good until 0.6 C rate and the alloys, Zr 0.02, Ti 0.05 and V 0.1, have shown the best result as 92 % at 2.4 C rate. The charge retention property of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloys was not good and the alloys with M content from 0.02 to 0.05 showed better charge retention properties.

생체의료용 임플란트 소재를 위한 Zr-7Si-xSn 합금설계 (Design of Zr-7Si-xSn Alloys for Biomedical Implant Materials)

  • 김민석;김정석
    • 열처리공학회지
    • /
    • 제35권1호
    • /
    • pp.8-19
    • /
    • 2022
  • The metallic implant materials are widely used in biomedical industries due to their specific mechanical strenth, corrosion registance, and superior biocompatability. These metallic materials, however, suffer from the stress-shielding effect and the generation of artifacts in the magnetic resonance imaging exam. In the present study, we develope a Zr-based alloys for the biomedical implant materials with low elastic modulus and low magnetic susceptibility. The Zr-7Si-xSn alloys were fabricated by an arc melting process. The elastic modulus was 24~31 GPa of the zirconium-based alloy. The average magnetic susceptibility value of the Zr-7Si-xSn alloy was 1.25 × 10-8cm3g-1. The average Icorr value of the Zr-7Si-xSn alloy was 0.2 ㎂/cm2. The Sn added zirconium alloy, Zr-7Si-xSn, is very interested and attractive as a biomaterial that reduces the stress-shielding effect caused by the difference of elastic modulus between human bone and metallic implant.

EFFECT OF THE MICROSTRUCTURE ON MAGNETIC PROPERTIES OF $Nd_{2}(Fe,Co)_{14}B_{1}Ga$-BASED ALLOYS DURING HDDR PROCESS

  • Jeung, W.Y.;Lee, S.H.;Vintaikin, B.E.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.408-411
    • /
    • 1995
  • Microstructure and magnetic properties of $Fe-Nd_{13.5}-Co_{15}-B_{6-8}Ga_{0-1}-Zr_{0.2-1}$ alloys during HDDR process were studied. $ZrB_{2}$ phase was detected and identified by X-Ray diffraction. Influence of Ga, Zr and Ga+Zr additions on phase relations at different stages of HDDR process was studied by X-ray diffraction and magnetic measurements.

  • PDF

Zr 합금의 기계적 특성에 미치는 Nb와 Sn의 영향 (Effect of Niobium and Tin on Mechanical Properties of Zirconium Alloys)

  • 김경호;최병권;백종혁;김선재;정용환
    • 한국재료학회지
    • /
    • 제9권2호
    • /
    • pp.188-194
    • /
    • 1999
  • 2원계 (Zr-xNb, Zr-xSnl 와 3원계 (Zr-O.8Sn-xNb, Zr-O.4Nb-xSnl Zr합금의 기계적 특성에 미치는 Nb와 Sn의 영향올 조사하기 위하여 인장시험 빛 마세조직 분석을 실시하였다. Nb와 Sn량이 많이 첨가될수록 2원계와 3원계 합금의 강도는 정진적으로 증가하는 경향을 보이는데, Nb와 Sn이 고용도 이상으로 첨가될 때 강도중가는 더욱 두드러진 것으로 냐타났다. 강도 증가현상을 고용강화, 석출강화, 결정립 미세화에 의한 강화, 집합조직에 의한 강화효과 관정에서 분석한 결과, 고용강화 효과가 가장 두드러지며 Nb와 Sn이 고용도 이상에서는 석출강화가 강도에 기여하는 것으로 냐타났다. 합금원소 첨가에 따른 결정립미세화도 강도에 약간은 영향을 미치는 것으로 사료된다. 그러나 집합조직은 합금원소 변화에 따라서 거의 변화가 없는 것으로 냐타났으므로 집합조직은 강도증가에 기여하지 않는 것으로 생각된다.

  • PDF