• 제목/요약/키워드: Zr-based alloys

검색결과 121건 처리시간 0.024초

Nb과 Sn 첨가에 따른 Zr 합금의 재결정 및 TEP 거동 (Recrystallization TEP Behavior of Zr-based alloy by addition of Nb and Sn)

  • 정흥식;오영민;정용환;김선진
    • 한국재료학회지
    • /
    • 제11권2호
    • /
    • pp.104-114
    • /
    • 2001
  • Zr-Sn-Nb 합금의 재결정에 미치는 Nb과 Sn의 첨가영향을 연구하기 위해 냉간압연한 시편을 $300^{\circ}C$~75$0^{\circ}C$의 온도구간에서 열처리한 후에 미소경도와 TEP (Thermoelectric Power)를 측정하여 재결정 거동을 조사하였으며 광학현미경, 주사전자 현미경 (SEM), 투과전자현미경 (TEM)으로 미세조직을 관찰하였다 미소경도 및 미세조직의 분석 결과에 따르면, Nb과 Sn의 첨가에 의해 재결정 활성화 에너지가 증가하여 재결정이 지연되었으며, 재결정 완료 이후의 결정립 성장도 억제되었음을 관찰하였다. Zr내의 고용도가 매우 낮은 Nb의 첨가는 석출물을 쉽게 형성하는 반면에 고용도가 비교적 큰 Sn은 기지상 내에 대부분 고용되어 석출물의 양이 매우 작았으나, Sn 첨가에 의한 재결정의 지연 효과가 더욱 컸다. Nb보다 Sn의 첨가가 Zr 합금의 재결정 거동을 효과적으로 지연시킨 것은 고용도가 높은 SR에 의한 치환형 고용체 형성과정에서 발생된 응력장이 전위의 이동을 효과적으로 억제했기 때문으로 생각된다. 한편, 회복과 재결정이 진행됨에 따라 전자 산란인자의 감소로 TEP는 증가하였으며, 재결정이 완료되면 TEP의 포화가 발생하였다. 석출물의 형성은 석출물 주변의 용질농도 감소로 인한 전자 산란인자의 감소에 기인하여 TEP의 증가를 가져왔다

  • PDF

Morphology of RF-sputtered Mn-Coatings for Ti-29Nb-xHf Alloys after Micro-Pore Form by PEO

  • Park, Min-Gyu;Park, Seon-Yeong;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.197-197
    • /
    • 2016
  • Commercially pure titanium (CP Ti) and Ti-6Al-4V alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Manganese(Mn) plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Radio frequency(RF) magnetron sputtering in the various PVD methods has high deposition rates, high-purity films, extremely high adhesion of films, and excellent uniform layers for depositing a wide range of materials, including metals, alloys and ceramics like a hydroxyapatite. The aim of this study is to research the Mn coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. Mn coatings was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Mn coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

벌크 아몰퍼스 금속의 충격파괴 거동 평가를 위한 미소 샬피 시험편을 사용한 계장화 충격 시험법 (Instrumented Impact Test using Subsize Charpy Specimen for Evaluating Impact Fracture Behavior in Bulk Amorphous Metals)

  • 신형섭;고동균;정영진;오상엽;김문생
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.101-106
    • /
    • 2003
  • In order to investigate the mechanical behavior of newly developed materials, the evaluation of mechanical properties using small-size specimen is essential. For those purposes, an instrumented impact testing apparatus, which provides the load-displacement curve under impact loading without oscillations, was devised. To develop the test procedure with the setup, the impact behaviors of various kinds of structural materials such as S45C, SCM4, Ti alloys (Ti-6V-4Al) and Zr-based bulk amorphous metal, were investigated through the instrumented Charpy V-notch impact tests. The calibrations of the dynamic load and displacement that was calculated based on the Newton' second law were carried out through the quasi-static load test and the comparison of a directly measured value using a laser displacement meter. Satisfactory results could be obtained. The crack initiation and propagation processes during impact fracture could be well divided on the curve, depending on the intrinsic characteristic of specimen tested; ductile or brittle. The absorbed impact energy in Zr-basd BAM was largely used for crack initiation not for crack propagation process. The fracture surfaces under impact loading showed different feature when compared with the static cases.

  • PDF

인체에 유해하지 않은 원소를 사용한 Ti 계 벌크 비정질 합금 개발 (Development of Ti-based Bulk Metallic Glasses with Non-toxic Elements)

  • 이철규;이승훈
    • 한국주조공학회지
    • /
    • 제32권4호
    • /
    • pp.177-180
    • /
    • 2012
  • Ti-based bulk metallic glasses with high glass forming ability were developed through a systematic alloy design technique. The main alloy design strategy was the selection of alloying elements that may not be toxic in the human body. The $Ti_{45.0}Cu_{40.1}Zr_{12.7}Si_{2.2}$ alloy could be cast into an amorphous rod with the diameter of 3 mm by a suction casting technique using Cu mold. The compressive strength of the amorphous rod was measured as 1826 MPa. Since the Ti-based amorphous alloys consist of non-toxic elements, they can be widely used as bio-materials and eco-materials with unique and beneficial properties.

AI-Li제 합금의 가공열처리에 따른 조직과 기계적성질의 변화 (The Variation of Microstructures and Mechanical Properties by Thermomechanical Treatment in Al-Li Based Alloys)

  • 김기원;우기도;이광로;이민상;이민호;황호을
    • 열처리공학회지
    • /
    • 제4권3호
    • /
    • pp.13-20
    • /
    • 1991
  • The present work was aimed to examine the variation of precipitations and mechanical properties by thermomechanical treatments (TMT) in Al-2.19 wt%Li and Al-2.0 wt%Li-0.11 wt%Zr alloys. This study was performed by TEM, SEM observation, DSC, electrical resistance measurement, hardness and tensile strength measurement. First peak of resistivity aged at $90^{\circ}C$ was caused by precipitation of ${\delta}^{\prime}$-precursor phase, and second peak was caused by precipitation of ${\delta}^{\prime}$ phase. According to this result, the precipitation process of Al-2.19 wt%Li alloy was as follow : $SSSS{\rightarrow}{\delta}^{\prime}$-precursor phase ${\rightarrow}{\delta}^{\prime}$ (Coherent ${\rightarrow}$ Semi-coherent) ${\rightarrow}{\delta}$. In a Al-2.0 wt%Li-0.11 wt%Zr ternary alloy, the first peak of resistivity was appeared at initial aging heat-treatment. It is result from exsistant of ${\delta}^{\prime}$-precursor phase. The effect acceleration in a binary alloy was not appeared and the over-aging ternary alloy was accelerated with increase of the reduction rate. It is caused by combination effect of ${\delta}^{\prime}$ and composite phase.

  • PDF

Si and Mg doped Hydroxyapatite Film Formation by Plasma Electrolytic Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.195-195
    • /
    • 2016
  • Titanium and its alloys are widely used as implants in orthopedics, dentistry and cardiology due to their outstanding properties, such as high strength, high level of hemocompatibility and enhanced biocompatibility. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The aim of this study is to research Si and Mg doped hydroxyapatite film formation by plasma electrolytic oxidation. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. A Si and Mg coating was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

$Fe_{87}Zr_{7}B_{5}Ag_{1}$ 비정질합금의 연자기 특성 (The Magnetic Properties of $Fe_{87}Zr_{7}B_{5}Ag_{1}$(at.%) Amorphous Alloy)

  • 김병걸;송재성;김현식;오영우
    • 한국자기학회지
    • /
    • 제5권1호
    • /
    • pp.8-14
    • /
    • 1995
  • $Fe_{87}Zr_{7}B_{6}$(at.%)조성의 합금에 Fe에 대해 비고용원소인 Ag를 B와 1.0at.% 치환한 $Fe_{87}Zr_{7}B_{5}Ag_{1}$(at.%) 조성의 비정질리본을 액체급냉법으로 제조하여, 연자 기특성을 조사하였다. 급냉응고된 비정질리본의 연자기특성을 향상시키기 위하여 $300~600^{\circ}C$에서 $50^{\circ}C$ 간격으로 열처리한 후, 비정질리본의 연자기특성 및 미세조직의 변화를 조사하였다. 열처리방 법은 진공분위기에서 무자장중 열처리하여 상온까지 노냉했다. $Fe_{87}Zr_{7}B_{5}Ag_{1}$ 비 정질리본을 $400^{\circ}C$에서 1시간 등온열처리하였 때, 보자력$(H_{c})$ 15 mOe, 초투자율$(\mu_{i})$ 288,000(1kHz, 2mOe) 그리고 철손$(W_{c})$ 50 W/kg(100kHz, 1,000G)이라는 Co계 비정질합금에 필적할 수 있는 대단히 우수한 연자성재료가 개발되었다. 이와 같은 우수한 연자기특성은 Fe 와 비고용원소인 Ag 를 소량 첨가함에 따라 열처리에 의해 2~3 nm 크기의 미세한 Fe-rich cluster 형성에 따른 전기저항의 증가, 자왜의 감소 그리고 자구(domain) 크기의 감소에 기인한다고 생각된다.

  • PDF

동기지 동계 Bulk Amorphous 복합재의 압축 변형거동 (Deformation behavior in Cu-based bulk amorphous alloys composite during compression)

  • 이창호;김지수;박은수;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.203-206
    • /
    • 2004
  • Copper-based bulk amorphous alloy composite was synthesized by using the copper-coated $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ amorphous powder which was obtained by argon gas atomization. The amorphous powder having a super-cooled liquid region of 53 K was coated by crystalline copper by electroless coating. The consolidation was carried out by manufacturing performs and by the subsequent warm extrusion at 743 K. During the compression test at the room temperature, the composite containing a large fraction of crystalline copper displayed a larger plastic strain after yielding. FEM simulation revealed change in fracture modes in the composites depending on the amount of crystalline copper in the composites.

  • PDF

Effect of Cu and Mg on Forging Property and Mechanical Behavior of Powder Forged Al-Si-Fe Based Alloy

  • Lee, Dong-Suk;Jung, Taek-Kyun;Kim, Mok-Soon;Kim, Won-Yong
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1000-1001
    • /
    • 2006
  • Two atomized alloy powders were pre-compacted by cold and subsequently hot forged at temperatures ranging from 653K to 845K. The addition of Cu and Mg causes a decrease in the eutectic reaction temperature of Al-10Si-5Fe-1Zr alloy from 841K to 786K and results in a decrease of flow stress at the given forging temperature. TEM observation revealed that in addition to Al-Fe based intermetallics, $Al_2Cu$ and $Al_2CuMg$ intermetallics appeared. The volume fraction of intermetallic dispersoids increased by the addition of Cu and Mg. Compressive strength of the present alloys was closely related to the volume fraction of intermetallic dispersoids.

  • PDF

Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

  • Cheng, Bo;Kim, Young-Jin;Chou, Peter
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.16-25
    • /
    • 2016
  • In severe loss of coolant accidents (LOCA), similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconiumalloy fuel claddingmaterials are rapidlyheateddue to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident management, an accident tolerant fuel (ATF) design may extend coping and recovery time for operators to restore emergency power, and cooling, and achieve safe shutdown. An ATF is required to possess high resistance to steam oxidation to reduce hydrogen generation and sufficient mechanical strength to maintain fuel rod integrity and core coolability. The initiative undertaken by Electric Power Research Institute (EPRI) is to demonstrate the feasibility of developing an ATF cladding with capability to maintain its integrity in $1,200-1,500^{\circ}C$ steam for at least 24 hours. This ATF cladding utilizes thin-walled Mo-alloys coated with oxidation-resistant surface layers. The basic design consists of a thin-walled Mo alloy structural tube with a metallurgically bonded, oxidation-resistant outer layer. Two options are being investigated: a commercially available iron, chromium, and aluminum alloy with excellent high temperature oxidation resistance, and a Zr alloy with demonstratedcorrosionresistance.Asthese composite claddings will incorporate either no Zr, or thin Zr outer layers, hydrogen generation under severe LOCA conditions will be greatly reduced. Key technical challenges and uncertainties specific to Moalloy fuel cladding include: economic core design, industrial scale fabricability, radiation embrittlement, and corrosion and oxidation resistance during normal operation, transients, and severe accidents. Progress in each aspect has been made and key results are discussed in this document. In addition to assisting plants in meeting Light Water Reactor (LWR) challenges, accident-tolerant Mo-based cladding technologies are expected to be applicable for use in high-temperature helium and molten salt reactor designs, as well as nonnuclear high temperature applications.