• Title/Summary/Keyword: Zr-O 서밋 태양선택흡수막

Search Result 2, Processing Time 0.015 seconds

Deposition of Solar Selective Coatings for High Temperature Applications (고온용 태양 선택흡수막의 제작)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.33-42
    • /
    • 2008
  • Zr-O ($Zr-ZrO_2$) cermets solar selective coatings with a double cermets layer film structure were prepared using a DC (direct current) magnetron sputtering method. The typical film structure from surface to bottom substrate were an $Al_2O_3$ anti-reflection layer on a double Zr-O cermets layer on an Al metal infrared reflection layer. Optical properties of optimized Zr-O cermets solar selective coating had an absorptance of ${\alpha}\;=\;0.95$ and thermal omittance of ${\epsilon}\;=\;0.10\;(100^{\circ}C)$. The absorbing layer of Zr-O cermets coatings on glass and silicon substrate was identified as being amorphous by using XRD. AFM showed that ZF-O cermets layers were very smooth and their surface roughness were approximately $0.1{\sim}0.2 nm$. The chemical analysis of the cermets coatings were determined by using XPS. Chemical shift of photoelectron binding energy was occurred due to the change of Zr-O cermets coating structure deposited with increase in oxygen flow rate. The result of thermal stability test showed that the Zr-O cermets solar selective coating was stable for use at temperature below $350^{\circ}C$.

Performance Evaluation of Selective Coatings for Solar Thermal Collectors (태양열 집열기에 사용될 선택흡수막의 성능 평가)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.43-50
    • /
    • 2012
  • Metal-metal oxide (M-M oxide) cermet solar selective coatings with a double cermet layer film structure were deposited on the Al-deposited glass substrate by using a directed current (DC) magnetron sputtering technology. M oxide (CrO and ZrO) was used as the ceramic component in the cermets, and Cr and Zr used as the metallic components. In addition, black Cr (Cr-$Cr_2O_3$ cermet) solar selective coatings were deposited on the Ni-plated Cu substrate by using a electroplating method for comparison. The thermal stability tests were carried out for performance evaluation of solar coatings. Reflectance measurements were used to evaluate both solar absorptance(${\alpha}$) and thermal emittance (${\epsilon}$) of the solar coatings before and after thermal testing by using a spectrometer. Optical properties of optimized cermet solar coatings were ${\alpha}{\simeq}0.94-0.96$ and ${\epsilon}{\simeq}0.1$ ($100^{\circ}C$). The results of thermal stability test of M-M oxide solar coatings showed that the Cr-CrO cermet solar selective coatings were more stable than the Zr-ZrO cermet selective coatings at temperature of both $400^{\circ}C$ in air and $450^{\circ}C$ in vacuum. The black Cr solar selective coatings were degraded in air at temperature of $400^{\circ}C$. The main optical degradation modes of these coatings were diffusion of metal atoms, and oxidation.